遗传 ›› 2023, Vol. 45 ›› Issue (8): 669-683.doi: 10.16288/j.yczz.23-043
收稿日期:
2023-03-03
修回日期:
2023-05-20
出版日期:
2023-08-20
发布日期:
2023-05-31
通讯作者:
高晓冬,藤田盛久
E-mail:2455215827@qq.com;mfujita@gifu-u.ac.jp;xdgao@ipe.ac.cn
作者简介:
孔维泽,在读硕士研究生,专业方向:生物化学与分子生物学。E-mail: 基金资助:
Weize Kong(), Yishi Liu, Xiaodong Gao(), Morihisa Fujita()
Received:
2023-03-03
Revised:
2023-05-20
Online:
2023-08-20
Published:
2023-05-31
Contact:
Xiaodong Gao,Morihisa Fujita
E-mail:2455215827@qq.com;mfujita@gifu-u.ac.jp;xdgao@ipe.ac.cn
Supported by:
摘要:
人体细胞中含有超过146种GPI锚定蛋白(glycosylphosphatidylinositol-anchored protein, GPI-AP),包括受体、配体、粘附分子和酶等。这些蛋白通过GPI锚定在细胞膜表面的脂筏中,发挥多种重要生物学功能。目前,已经对GPI锚定蛋白的生物合成开展了大量研究,其中GPI-AP的生物合成包括至少20步反应,已鉴定出超过40个GPI-AP合成相关基因,但是仍缺乏对于GPI-AP相关基因在正常组织与癌症组织中表达调控的研究。本研究利用来自于TCGA数据库和GTEx portal的基因表达数据,同时结合使用GlycoMaple糖基化通路分析工具,对正常组织与癌症组织中参与GPI-AP合成和编码GPI-AP的基因的表达情况进行了全面分析。研究发现,与正常组织相比,在早期胶质瘤、多形性胶质母细胞瘤、胰腺癌、睾丸生殖细胞癌、原发性皮肤黑色素瘤和转移性皮肤黑色素瘤中,参与GPI-AP合成的基因表达发生了显著变化,其中PIGY在这6种癌症中表达量均有上升。此外,GPI锚定蛋白编码基因CD14在这6种癌症中的表达量上升。GPI锚定蛋白编码基因GAS1、GPC2、GPC4仅在早期胶质瘤和多形性胶质母细胞瘤中表达量上升,说明部分GPI锚定蛋白如GAS1等可以作为早期胶质瘤和多形性胶质母细胞瘤生物标志物。本研究为GPI-AP相关基因在正常组织与癌症组织中的表达情况提供了新的见解,为GPI-AP作为生物标志物的开发打下了坚实基础。
孔维泽, 柳艺石, 高晓冬, 藤田盛久. 数据驱动的人体正常和癌症组织中糖基磷脂酰肌醇锚定蛋白(GPI-AP)相关基因表达谱的综合分析[J]. 遗传, 2023, 45(8): 669-683.
Weize Kong, Yishi Liu, Xiaodong Gao, Morihisa Fujita. Comprehensive in silico analysis of glycosylphosphatidylinositol- anchored protein (GPI-AP) related genes expression profiles in human normal and cancer tissues[J]. Hereditas(Beijing), 2023, 45(8): 669-683.
[1] |
Xia MQ, Hale G, Lifely MR, Ferguson MA, Campbell D, Packman L, Waldmann H. Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem J, 1993, 293(Pt 3): 633-640.
doi: 10.1042/bj2930633 |
[2] |
Legan PK, Rau A, Keen JN, Richardson GP. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem, 1997, 272(13): 8791-8801.
doi: 10.1074/jbc.272.13.8791 pmid: 9079715 |
[3] |
Hazenbos WLW, Clausen BE, Takeda J, Kinoshita T. GPI-anchor deficiency in myeloid cells causes impaired FcgammaR effector functions. Blood, 2004, 104(9): 2825-2831.
doi: 10.1182/blood-2004-02-0671 pmid: 15238423 |
[4] |
Kawagoe K, Kitamura D, Okabe M, Taniuchi I, Ikawa M, Watanabe T, Kinoshita T, Takeda J. Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood, 1996, 87(9): 3600-3606.
pmid: 8611683 |
[5] |
Pittet M, Conzelmann A. Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 2007, 1771(3): 405-420.
pmid: 16859984 |
[6] |
Ueda Y, Yamaguchi R, Ikawa M, Okabe M, Morii E, Maeda Y, Kinoshita T. PGAP1 knock-out mice show otocephaly and male infertility. J Biol Chem, 2007, 282(42): 30373-30380.
doi: 10.1074/jbc.M705601200 pmid: 17711852 |
[7] |
Capurro M, Martin T, Shi W, Filmus J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J Cell Sci, 2014, 127(Pt 7): 1565-1575.
doi: 10.1242/jcs.140871 pmid: 24496449 |
[8] |
Capurro MI, Xiang YY, Lobe C, Filmus J. Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res, 2005, 65(14): 6245-6254.
doi: 10.1158/0008-5472.CAN-04-4244 pmid: 16024626 |
[9] | Wang DC, Gao Y, Zhang Y, Wang LF, Chen G. Glypican-3 promotes cell proliferation and tumorigenesis through up-regulation of β-catenin expression in lung squamous cell carcinoma. Biosci Rep, 2019, 39(6): BSR20181147. |
[10] |
Nakatsura T, Yoshitake Y, Senju S, Monji M, Komori H, Motomura Y, Hosaka S, Beppu T, Ishiko T, Kamohara H, Ashihara H, Katagiri T, Furukawa Y, Fujiyama S, Ogawa M, Nakamura Y, Nishimura Y. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun, 2003, 306(1): 16-25.
doi: 10.1016/S0006-291X(03)00908-2 |
[11] |
Umezu T, Shibata K, Shimaoka M, Kajiyama H, Yamamoto E, Ino K, Nawa A, Senga T, Kikkawa F. Gene silencing of glypican-3 in clear cell carcinoma of the ovary renders it more sensitive to the apoptotic agent paclitaxel in vitro and in vivo. Cancer Sci, 2010, 101(1): 143-148.
doi: 10.1111/cas.2009.101.issue-1 |
[12] | Cottereau E, Mortemousque I, Moizard MP, Bürglen L, Lacombe D, Gilbert-Dussardier B, Sigaudy S, Boute O, David A, Faivre L, Amiel J, Robertson R, Viana Ramos F, Bieth E, Odent S, Demeer B, Mathieu M, Gaillard D, Van Maldergem L, Baujat G, Maystadt I, Héron D, Verloes A, Philip N, Cormier-Daire V, Frouté MF, Pinson L, Blanchet P, Sarda P, Willems M, Jacquinet A, Ratbi I, Van Den Ende J, Lackmy-Port Lis M, Goldenberg A, Bonneau D, Rossignol S, Toutain A. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. Am J Med Genet C Semin Med Genet, 2013, 163c(2): 92-105. |
[13] |
Johnson B, Mahadevan D. Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin Cancer Drugs, 2015, 2(2): 100-111.
doi: 10.2174/2212697X02666150602215823 |
[14] |
Camacho-Leal P, Zhai AB, Stanners CP. A co-clustering model involving alpha5beta1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J Cell Physiol, 2007, 211(3): 791-802.
doi: 10.1002/jcp.20989 pmid: 17286276 |
[15] |
Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang GL, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki- Kinoshita KF, Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev Cell, 2021, 56(8): 1195-1209.e7.
doi: 10.1016/j.devcel.2021.02.023 |
[16] |
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo YH, Rogers D, Brooks AN, Zhu JC, Haussler D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol, 2020, 38(6): 675-678.
doi: 10.1038/s41587-020-0546-8 pmid: 32444850 |
[17] |
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res, 2015, 43(Database issue): D204-D212.
doi: 10.1093/nar/gku989 |
[18] |
Kinoshita T. Biosynthesis and biology of mammalian GPI-anchored proteins. Open Biol, 2020, 10(3): 190290.
doi: 10.1098/rsob.190290 |
[19] |
Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T. Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell, 2005, 16(3): 1439-1448.
pmid: 15635094 |
[20] |
Ohishi K, Inoue N, Kinoshita T.PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J, 2001, 20(15): 4088-4098.
pmid: 11483512 |
[21] |
Tanaka S, Maeda Y, Tashima Y, Kinoshita T. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem, 2004, 279(14): 14256-14263.
doi: 10.1074/jbc.M313755200 pmid: 14734546 |
[22] |
Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, Kanzawa N, Murakami Y, Maeda Y, Fujita M, Yamaguchi Y, Kinoshita T. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat Commun, 2018, 9(1): 405.
doi: 10.1038/s41467-017-02799-0 pmid: 29374258 |
[23] |
Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T.Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J, 2000, 19(16): 4402-4411.
pmid: 10944123 |
[24] |
Kajiwara K, Watanabe R, Pichler H, Ihara K, Murakami S, Riezman H, Funato K. Yeast ARV1 is required for efficient delivery of an early GPI intermediate to the first mannosyltransferase during GPI assembly and controls lipid flow from the endoplasmic reticulum. Mol Biol Cell, 2008, 19(5): 2069-2082.
doi: 10.1091/mbc.E07-08-0740 pmid: 18287539 |
[25] |
Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T. The cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science, 1993, 259(5099): 1318-1320.
doi: 10.1126/science.7680492 pmid: 7680492 |
[26] |
Inoue N, Watanabe R, Takeda J, Kinoshita T.PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun, 1996, 226(1): 193-199.
doi: 10.1006/bbrc.1996.1332 |
[27] |
Kamitani T, Chang HM, Rollins C, Waneck GL, Yeh ET. Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J Biol Chem, 1993, 268(28): 20733-20736.
pmid: 8407896 |
[28] |
Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J, 1998, 17(4): 877-885.
pmid: 9463366 |
[29] |
Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell, 2005, 16(11): 5236-5246.
pmid: 16162815 |
[30] |
Fujihara Y, Ikawa M. GPI-AP release in cellular, developmental, and reproductive biology. J Lipid Res, 2016, 57(4): 538-545.
doi: 10.1194/jlr.R063032 pmid: 26593072 |
[31] |
Knaus A, Kortüm F, Kleefstra T, Stray-Pedersen A, Đukić D, Murakami Y, Gerstner T, van Bokhoven H, Iqbal Z, Horn D, Kinoshita T, Hempel M, Krawitz PM. Mutations in PIGU impair the function of the GPI transamidase complex, causing severe intellectual disability, epilepsy, and brain anomalies. Am J Hum Genet, 2019, 105(2): 395-402.
doi: S0002-9297(19)30234-4 pmid: 31353022 |
[32] |
Paprocka J, Hutny M, Hofman J, Tokarska A, Kłaniewska M, Szczałuba K, Stembalska A, Jezela-Stanek A, Śmigiel R. Spectrum of neurological symptoms in glycosylphosphatidylinositol biosynthesis defects: systematic review. Front Neurol, 2022, 12: 758899.
doi: 10.3389/fneur.2021.758899 |
[33] |
Murakami Y, Tawamie H, Maeda Y, Büttner C, Buchert R, Radwan F, Schaffer S, Sticht H, Aigner M, Reis A, Kinoshita T, Jamra RA. Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet, 2014, 10(5): e1004320.
doi: 10.1371/journal.pgen.1004320 |
[34] |
Granzow M, Paramasivam N, Hinderhofer K, Fischer C, Chotewutmontri S, Kaufmann L, Evers C, Kotzaeridou U, Rohrschneider K, Schlesner M, Sturm M, Pinkert S, Eils R, Bartram CR, Bauer P, Moog U. Loss of function of PGAP1 as a cause of severe encephalopathy identified by whole exome sequencing: lessons of the bioinformatics pipeline. Mol Cell Probes, 2015, 29(5): 323-329.
doi: 10.1016/j.mcp.2015.05.012 |
[35] |
Davids M, Menezes M, Guo YR, McLean SD, Hakonarson H, Collins F, Worgan L, Billington CJ, Maric I, Littlejohn RO, Onyekweli T, Members Of The U, Adams DR, Tifft CJ, Gahl WA, Wolfe LA, Christodoulou J, Malicdan MCV. Homozygous splice-variants in human ARV1 cause GPI-anchor synthesis deficiency. Mol Genet Metab, 2020, 130(1): 49-57.
doi: S1096-7192(20)30055-X pmid: 32165008 |
[36] |
Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DDM. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci, 2004, 25(2): 263-274.
pmid: 15019943 |
[37] |
Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N, Manrique-Hoyos N, Kongi K, Cantuti L, Hanisch UK, Philips MA, Rossner MJ, Mann M, Simons M. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci, 2015, 18(12): 1819-1831.
doi: 10.1038/nn.4160 pmid: 26523646 |
[38] |
Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He ZG. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417(6892): 941-944.
doi: 10.1038/nature00867 |
[39] |
Vourc'h P, Dessay S, Mbarek O, Marouillat Védrine S, Müh JP, Andres C. The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. Brain Res Dev Brain Res, 2003, 144(2): 159-168.
doi: 10.1016/S0165-3806(03)00167-6 |
[40] |
Lin SR, Yu IS, Huang PH, Tsai CW, Lin SW. Chimaeric mice with disruption of the gene coding for phosphatidylinositol glycan class A (Pig-a) were defective in embryogenesis and spermatogenesis. Br J Haematol, 2000, 110(3): 682-693.
doi: 10.1046/j.1365-2141.2000.02209.x |
[41] |
Fujihara Y, Okabe M, Ikawa M. GPI-anchored protein complex, LY6K/TEX101, is required for sperm migration into the oviduct and male fertility in mice. Biol Reprod, 2014, 90(3): 60.
doi: 10.1095/biolreprod.113.112888 pmid: 24501175 |
[42] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2021, 78(4): 1233-1261.
doi: 10.1007/s00018-020-03656-y pmid: 33057840 |
[43] |
Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen ZY, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354(6316): 1160-1165.
pmid: 27789795 |
[44] |
Chikaraishi K, Takenobu H, Sugino RP, Mukae K, Akter J, Haruta M, Kurosumi M, Endo TA, Koseki H, Shimojo N, Ohira M, Kamijo T. CFC1 is a cancer stemness-regulating factor in neuroblastoma. Oncotarget, 2017, 8(28): 45046-45059.
doi: 10.18632/oncotarget.18464 pmid: 28620148 |
[45] |
Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC, Mille F, Krauss RS, McMahon AP, Allen BL, Charron F. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell, 2011, 20(6): 788-801.
doi: 10.1016/j.devcel.2011.04.017 pmid: 21664577 |
[46] |
Zamorano A, Mellström B, Vergara P, Naranjo JR, Segovia J. Glial-specific retrovirally mediated gas1 gene expression induces glioma cell apoptosis and inhibits tumor growth in vivo. Neurobiol Dis, 2004, 15(3): 483-491.
pmid: 15056455 |
[47] |
Shi W, Filmus J. Glypican-6 and Glypican-4 stimulate embryonic stomach growth by regulating Hedgehog and noncanonical Wnt signaling. Dev Dyn, 2022, 251(12): 2015-2028.
doi: 10.1002/dvdy.v251.12 |
[48] |
Ng W, Pébay A, Drummond K, Burgess A, Kaye AH, Morokoff A. Complexities of lysophospholipid signalling in glioblastoma. J Clin Neurosci, 2014, 21(6): 893-898.
doi: 10.1016/j.jocn.2014.02.013 pmid: 24746442 |
[1] | 漆思晗, 王棨临, 张俊有, 刘倩, 李春燕. 增强子调控癌症发生发展的机制研究[J]. 遗传, 2022, 44(4): 275-288. |
[2] | 雷常贵, 贾学渊, 孙文靖. 基于癌症基因组图谱计划多组学数据构建胶质母细胞瘤六基因预后模型[J]. 遗传, 2021, 43(7): 665-679. |
[3] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[4] | 李鑫,李梦玮,张依楠,徐寒梅. 常用肿瘤基因分析方法及基于TCGA数据库的分析应用[J]. 遗传, 2019, 41(3): 234-242. |
[5] | 吴志强, 米泽云. 超级增强子在肿瘤研究中的进展[J]. 遗传, 2019, 41(1): 41-51. |
[6] | 胡立桥,周兆才,田伟. Hippo信号通路结构生物学研究进展[J]. 遗传, 2017, 39(7): 659-674. |
[7] | 许崇凤,段子渊. 中华民族永生细胞库在生命科学研究中的支撑作用[J]. 遗传, 2017, 39(1): 75-86. |
[8] | 王大勇, 马宁, 惠洋, 高旭. CRISPR/Cas9基因组编辑技术在癌症研究中的应用[J]. 遗传, 2016, 38(1): 1-8. |
[9] | 周学, 杜宜兰, 金萍, 马飞. 癌症相关microRNA与靶基因的生物信息学分析[J]. 遗传, 2015, 37(9): 855-864. |
[10] | 汤静思, 杨明耀, 李英. 假基因的功能及其在癌症疾病中的重要作用[J]. 遗传, 2015, 37(1): 8-16. |
[11] | 白玉, 陆雯芸, 韩凝, 边红武, 朱睦元. miR126功能的多效性与先天性免疫[J]. 遗传, 2014, 36(7): 631-636. |
[12] | 张凡,林爱华,林美华,丁元林,饶绍奇. 基于双聚类挖掘癌症共享的基因功能模块[J]. 遗传, 2013, 35(3): 333-342. |
[13] | 李大虎,张令强,贺福初. 突变体p53研究进展[J]. 遗传, 2008, 30(6): 697-703. |
[14] | 李小波,陈俭,吕炳建,来茂德. 应用CGH数据和树模型探索癌症的发病机理[J]. 遗传, 2008, 30(4): 407-412. |
[15] | 田筱青,孙丹凤,张燕捷,房静远. 芯片技术与肿瘤中DNA甲基化研究[J]. 遗传, 2008, 30(3): 295-303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: