[1] Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther , 2015, 15(6): 819-830. [2] Yin LJ, Hu SQ, Guo F. The application of CRISPR-Cas9 gene editing technology in viral infection diseases. Hereditas(Beijing) , 2015, 37(5): 412-418. 殷利眷, 胡斯奇, 郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用. 遗传, 2015, 37(5): 412-418. [3] Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [4] Cai M, Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther , 2014, 14(1): 2-9. [5] DiGiusto DL, Krishnan A, Li LJ, Li HT, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li MJ, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA. RNA-based gene therapy for HIV with lentiviral vector-modified CD34 + cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med , 2010, 2(36): 36RA43. [6] Hao YZ, Teng ZP, Zeng Y. HIV gene therapy overview and the latest developments. Chinese J Exp Clin Virol , 2013, 27(2): 156-158. 郝彦哲, 滕智平, 曾毅. HIV基因治疗概况及最新进展. 中华实验和临床病毒学杂志, 2013, 27(2): 156-158. [7] Tian YR, Jiao YM, Zhang T, Wu H. Recent progress in the gene therapies against HIV-1. J Cap Med Univ , 2014, 35(1): 101-107. 田雅茹, 焦艳梅, 张彤, 吴昊. 抗HIV-1基因治疗新进展. 首都医科大学学报, 2014, 35(1): 101-107. [8] Chung J, Scherer LJ, Gu A, Gardner AM, Torres-Coronado M, Epps EW, DiGiusto DL, Rossi JJ. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT P140K drug resistance gene. Mol Ther , 2014, 22(5): 952-963. [9] Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology , 2009, 155(Pt 3): 733-740. [10] Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol , 2005, 60(2): 174-182. [11] Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. Damaging the integrated HIV proviral DNA with TALENs. PLoS One , 2015, 10(5): e0125652. [12] Ye L, Wang JM, Beyer AI, Teque F, Cradick TJ, Qi ZX, Chang JC, Bao G, Muench MO, Yu JW, Levy JA, Kan YW. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA , 2014, 111(26): 9591-9596. [13] Yi G, Choi JG, Bharaj P, Abraham S, Dang Y, Kafri T, Alozie O, Manjunath MN, Shankar P. CCR5 gene editing of resting CD4 + T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids , 2014, 3: e198. [14] Ru RN, Yao YC, Yu SL, Yin BP, Xu WW, Zhao ST, Qin L, Chen XP. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen (Lond) , 2013, 2(1): 5. [15] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821. [16] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [17] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife , 2013, 2: e00471. [18] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [19] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell , 2013, 154(2): 442-451. [20] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA- guided platform for sequence-specific control of gene expression. Cell , 2013, 152(5): 1173-1183. [21] Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo . Mol Ther Nucleic Acids , 2014, 3: e186. [22] Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun , 2014, 450(4): 1422-1426. [23] Wang JB, Quake SR. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA , 2014, 111(36): 13157-13162. [24] Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8 + T cells. Science , 1995, 270(5243): 1811-1815. [25] Biti R, Ffrench R, Young J, Bennetts B, Stewart G, Liang T. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med , 1997, 3(3): 252-253. [26] Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med , 2009, 360(7): 692-698. [27] Hütter G, Thiel E. Allogeneic transplantation of CCR5- deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no.2. AIDS , 2011, 25(2): 273-274. [28] Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, Sheppard HW. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med , 1997, 3(3): 338-340. [29] Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med , 1997, 3(1): 23-36. [30] Holt N, Wang JB, Kim K, Friedman G, Wang XC, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo . Nat Biotechnol , 2010, 28(8): 839-847. [31] Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med , 2014, 370(10): 901-910. [32] Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol , 2013, 31(3): 230-232. [33] Wang WM, Ye CBH, Liu JJ, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One , 2014, 9(12): e115987. [34] Maeder ML, Linder SJ, Cascio VM, Fu YF, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods , 2013, 10(10): 977-979. [35] Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods , 2013, 10(10): 973-976. [36] Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF. Long- term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4 + T cells. Nat Med , 2003, 9(6): 727-728. [37] Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science , 2007, 316(5833): 1912-1915. [38] Buchholz F, Hauber J. In vitro evolution and analysis of HIV-1 LTR-specific recombinases. Methods , 2011, 53(1): 102-109. [39] Mariyanna L, Priyadarshini P, Hofmann-Sieber H, Krepstakies M, Walz N, Grundhoff A, Buchholz F, Hildt E, Hauber J. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase. PLoS One , 2012, 7(2): e31576. [40] Qu XY, Wang PF, Ding DL, Li L, Wang HB, Ma L, Zhou X, Liu SH, Lin SG, Wang XH, Zhang GM, Liu SJ, Liu L, Wang JH, Zhang F, Lu DR, Zhu HZ. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res , 2013, 41(16): 7771-7782. [41] Hu WH, Kaminski R, Yang F, Zhang YG, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo XM, Khalili K. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA , 2014, 111(31): 11461-11466. [42] Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep , 2013, 3: 2510. [43] Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun , 2015, 6: 6413. [44] Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol , 2013, 21(6): 277-285. [45] Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature , 2012, 487(7408): 482-485. [46] Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, Lai J, Blankson JN, Siliciano JD, Siliciano RF. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell , 2013, 155(3): 540-551. [47] Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang LH, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol , 2013, 31(9): 833-838. [48] Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell , 2014, 159(3): 635-646. [49] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature , 2015, 517(7536): 583-588. [50] Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen YW, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. Genome-scale CRISPR-mediated control of gene repression and activation. Cell , 2014, 159(3): 647-661. |