[1] Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther , 2015, 15(6): 819-830. [2] Yin LJ, Hu SQ, Guo F. The application of CRISPR-Cas9 gene editing technology in viral infection diseases. Hereditas(Beijing) , 2015, 37(5): 412-418. 殷利眷, 胡斯奇, 郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用. 遗传, 2015, 37(5): 412-418. [3] Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [4] Cai M, Yang Y. Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther , 2014, 14(1): 2-9. [5] DiGiusto DL, Krishnan A, Li LJ, Li HT, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li MJ, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA. RNA-based gene therapy for HIV with lentiviral vector-modified CD34 + cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med , 2010, 2(36): 36RA43. [6] Hao YZ, Teng ZP, Zeng Y. HIV gene therapy overview and the latest developments. Chinese J Exp Clin Virol , 2013, 27(2): 156-158. 郝彦哲, 滕智平, 曾毅. HIV基因治疗概况及最新进展. 中华实验和临床病毒学杂志, 2013, 27(2): 156-158. [7] Tian YR, Jiao YM, Zhang T, Wu H. Recent progress in the gene therapies against HIV-1. J Cap Med Univ , 2014, 35(1): 101-107. 田雅茹, 焦艳梅, 张彤, 吴昊. 抗HIV-1基因治疗新进展. 首都医科大学学报, 2014, 35(1): 101-107. [8] Chung J, Scherer LJ, Gu A, Gardner AM, Torres-Coronado M, Epps EW, DiGiusto DL, Rossi JJ. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT P140K drug resistance gene. Mol Ther , 2014, 22(5): 952-963. [9] Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology , 2009, 155(Pt 3): 733-740. [10] Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol , 2005, 60(2): 174-182. [11] Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. Damaging the integrated HIV proviral DNA with TALENs. PLoS One , 2015, 10(5): e0125652. [12] Ye L, Wang JM, Beyer AI, Teque F, Cradick TJ, Qi ZX, Chang JC, Bao G, Muench MO, Yu JW, Levy JA, Kan YW. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA , 2014, 111(26): 9591-9596. [13] Yi G, Choi JG, Bharaj P, Abraham S, Dang Y, Kafri T, Alozie O, Manjunath MN, Shankar P. CCR5 gene editing of resting CD4 + T cells by transient ZFN expression from HIV envelope pseudotyped nonintegrating lentivirus confers HIV-1 resistance in humanized mice. Mol Ther Nucleic Acids , 2014, 3: e198. [14] Ru RN, Yao YC, Yu SL, Yin BP, Xu WW, Zhao ST, Qin L, Chen XP. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen (Lond) , 2013, 2(1): 5. [15] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821. [16] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [17] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife , 2013, 2: e00471. [18] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [19] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weiss |