[1] Breen SM, Andric N, Ping T, Xie F, Offermans S, Gossen JA, Ascoli M. Ovulation involves the luteinizing hormone- dependent activation of Gq/11 in granulosa cells. Mol Endocrinlo , 2013, 27(9): 1483-1491.
[2] Nishimura R, OkudaA K. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase. Reprod Fertil Dev , 2015.
[3] Tam KK, Russell DL, Peet DJ, Bracken CP, Rodgers RJ, Thompson JG, Kind KL. Hormonally regulated follicle differentiation and luteinization in the mouse is associated with hypoxia inducible factor activity. Mol Cell Endocrinol , 2010, 327(1-2): 47-55.
[4] Hashimoto T, Shibasaki T. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr , 2015, 3: 33.
[5] Takacova M, Pastorekova S. Tumour hypoxia-molecular mechanisms and clinical relevance. Klin Onkol, 2015, 28(3): 183-190.
[6] Li QF, Dai AG. Progress of HIFs. Journal of Medical Molecular Biology (wuhan) , 2003, 25(4): 219-223. 李启芳, 戴爱国. 低氧诱导因子家族研究进展. 国外医学分子生物学分册, 2003, 25(4): 219-223.
[7] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol , 1992, 12(12): 5447-5454.
[8] Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular?development. Proc Natl Acad Sci USA , 1997, 94(9): 4273-4278.
[9] Gu YZ, Moran SM, Hoqenesch JB, Wartman L, Bradfield CA. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr , 1998, 7(3): 205-213.
[10] Pawlus MR, Cheng JH. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response. Cell Signal , 2013, 25(9): 1895-1903.
[11] Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM , Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Scince , 2001, 292(5516): 464-468.
[12] Ivan M, Kaelin WG Jr. The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev , 2001, 11(1): 27-34.
[13] Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev , 1999, 13(14): 1822-1833.
[14] Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A. Identification of the von Hippel-Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA , 1999, 96(22): 12436-12441.
[15] Heikkila M, Pasanen A, Kivirikko KI, Myllyharju J. Roles of the human hypoxia-inducible factor (HIF)-3α variantsin the hypoxia response. Cell Mol Life Sci , 2011, 68(23): 3885-3901.
[16] Chen L, Endler A, Shibasaki F. Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp Mol Med , 2009, 41(12): 849-857.
[17] Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem , 2000, 275(33): 25733-25741.
[18] Zhao YZ, Liu XL, Shen GM, Ma YN, Zhang FL, Chen MT, Zhao HL, Yu J, Zhang JW. Hypoxia induces peroxisome proliferator-activated receptor γ expression via HIF-1- dependent mechanisms in HepG2 cell line. Arch Biochem Biophys , 2014, 543: 40-47.
[19] Pawlus MR, Wang L, Murakami A, Dai G, Hu CJ. STAT3 or USF2 contributes to HIF target gene specificity. PLoS One , 2013, 8(8): e72358.
[20] Pawlus MR , Wang L , Hu CJ. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene , 2014, 33(13): 1670-1679.
[21] Pawlus MR, Wang L, Ware K, Hu CJ. Upstream stimulatory factor 2 and hypoxia-inducible factor 2α (HIF2α) cooperatively activate HIF2 target genes during hypoxia. Mol Cell Biol , 2012, 32(22): 4595-4610.
[22] Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol Med , 2013, 19(3): 197- 209.
[23] Kowalewski MP, Gram A, Boos A. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells. Mol Cell Endocrinol , 2015, 401: 35-44.
[24] Yu RM, Chu DL, Tan TF, Li VW, Chan AK, Giesy JP, Cheng SH, Wu RS, Kong RY. Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: implications for the disruption of sex steroids. Environ Sci Technol , 2012, 46(16): 9112-9119.
[25] Fadhill, Yoshioka S, Nishimura R, Okuda K. Hypoxia promotes progesterone synthesis during luteinization in bovine granulosa cells. J Reprod Dev , 2014, 60(3): 194-201.
[26] Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol Med , 2013, 19(3): 197-209.
[27] Shang EH, Yu RM, Wu RS. Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish ( Danio rerio ). Environ Sci Technol , 2006, 40(9): 3118- 3122.
[28] Iaconoa E, Merlo B, Rizzato G, Mislei B, Govoni N, Tamanini C, Mari G. Effects of repeated transvaginal ultrasound-guided aspirations performed in anestrous and cyclic mares on P4 and E2 plasma levels and luteal function. Theriogenology , 2014, 82(2): 225-231.
[29] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med , 2003, 9(6): 669- 676.
[30] Alam H, Weck J, Maizels E, Park Y, Ashcroft M, Hunzicker-Dunn M. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology , 2009, 150(2): 915- 928.
[31] Thompson JG, Brown HM, Kind KL, Russell DL. The ovarian antral follicle: Living on the edge of hypoxia or not? Biol Reprod , 2015, pii: biolreprod.115.128660.
[32] Redding GP, Bronlund JE, Hart AL.Theoretical investigation into the dissolved oxygen levels in follicular fluid of the developing human follicle using mathematical modelling. Reprod Fertil Dev , 2008, 20(3): 408- 417.
[33] Zimmermann RC, Hartman T, Kavic S, Pauli SA, Bohlen P, Sauer MV, Kitajewski J. Vascular endothelial growth factor receptor 2-mediated angiogenesis is essentialfor gonadotropin-dependent follicle development. J Clin Invest , 2003, 112(5): 659-669.
[34] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer , 2003, 3(10): 721-732.
[35] Rico C, Dodelet-Devillers A, Paquet M, Tsoi M, Lapointe E, Carmeliet P, Boerboom D. HIF1 activity in granulosa cells is required for FSH-regulated Vegfa expression and follicle survival in mice. Biol Reprod , 2014, 90(6): 135.
[36] Meidan R, Klipper E, Zalman Y, Yalu R. The role of hypoxia-induced genes in ovarian angiogenesis. Reprod Fertil Dev , 2013, 25(2): 343-350.
[37] Grasselli F, Basini G, Bussolati S, Bianco F. Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev , 2005, 17: 715-72 0.
[38] Yacobi K, Tsafriri A, Gross A. Luteinizing hormone-induced caspase activation in rat preovulatory follicles is coupled to mitochondrial steroidogenesis. Endocrinology , 2007, 148(4): 1717-1726.
[39] Kim J, Sato M, Li Q, Lydon JP , Demayo FJ, Bagchi IC, Bagchi MK. Peroxisome proliferator-activated receptor is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol Cell Biol , 2008, 28(5): 1770-1782.
[40] Kim J, Bagchi IC, Bagchi MK. Control of ovulation in mice by progesterone receptor-regulated gene networks, Mol Hum Reprod , 2009, 15(12): 821-828.
[41] Kim J, Bagchi IC, Bagchi MK. Signaling by hypoxia-inducible factors is critical for ovulation in mice. Endocrinology , 2009, 150(7): 3392-3400.
[42] Robker RL, Akison LK, Russell DL. Control of oocyte release by progesterone receptor-regulated gene expression. Nucl Recept Signal , 2009, 7: e012.
[43] Robker RL, Russell DL, Espey LL, Lydon JP, Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci USA , 2000, 97(9): 4689- 4694.
[44] Sriraman V, Eichenlaub-Ritter U, Bartsch JW, Rittger A, Mulders SM, Richards JS. Regulated expression of ADAM8 (a disintegrin and metalloprotease domain 8) in the mouse ovary: evidence for a regulatory role of luteinizing hormone, progesterone receptor, and epidermal growth factor-like growth factors. Biol Reprod , 2008, 78(6): 1038-1048.
[45] Kang YH, Zhang BY, Wang PQ, Chu MX, Lai P, Cai BJ, Song WJ. Progesterone receptor-mediated molecular mechanisms on mam-malian female reproduction. Hereditas (Beijing) , 2012, 34(10): 1223-1232. 康岳华, 张宝云, 王凭青, 储明星, 赖平, 蔡冰杰, 宋文静. 孕酮受体介导哺乳动物雌性生殖活动的分子机理. 遗传, 2012, 34(10): 1223-1232.
[46] Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D , Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci USA , 2011, 108(4): 1462- 1467.
[47] Yalu R, Oyesiji AE, Eisenberq I, A, Imbar T, Meidan R. HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction , 2015, 149(1): 11-20.
[48] Reynolds LP, Killilea SD, Redmer DA. Angiogenesis the female reproductive system. Faseb J , 1992, 6(3): 886-892.
[49] Fadhillah, Yoshioka S, Nishimura R, Okuda K. Hypoxia promotes progesterone synthesis during luteinization in bovine granulosa cells. J Reprod Dev , 2014, 60(3): 194-201.
[50] Li D, Redding GP, Bronlund JE. Oxygen consumption by bovine granulosa cells with prediction of oxygen transport in preantral follicles. Reprod Fertil Dev , 2013, 25(8): 1158-1164.
[51] Kowalewski MP, Gram A, Boos A. The role of hypoxia and HIF1α in the regulation of STAR-mediated steroidogenesis in granulosa cells. Mol Cell Endocrinol , 2015, 401: 35-44.
[52] Klipper E, Levit A, Mastich Y, Berisha B, Schams D, Meidan R. Induction of endothelin-2 expression by luteinizing hormone and hypoxia: possible role in bovine corpus luteum formation. Endocrinology , 2010, 151(4): 1914-1922.
[53] Cacioppo JA, Oh SW, Kim HY, Cho J, Lin PC, Yanagisawa M, Ko C. Loss of function of endothelin-2 leads to reduce ovulation and CL formation. PLoS One , 2014, 9(4): e96115.
[54] Nishimura R, Sakumoto R, Tatsukawa Y, Acosta TJ, Okuda K. Oxygen concentration is an important factor for modulating progesterone synthesis in bovine corpus luteum. Endocrinology , 2006, 147(9): 4273-4280.
[55] Matsushita H, Morishita R, Nata T, Aoki M, Nakagami H, Taniyama Y, Yamamoto K, Higaki J, Yasufumi K, Ogihara T. Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ Res , 2000, 86(9): 974-981.
[56] Nishimura R, Komiyama J, Tasaki Y, Acosta TJ, Okuda K. Hypoxia promotes luteal cell death in bovine corpus luteum. Biol Reprod , 2008, 78(3): 529-536.
[57] Zhao CY, Zhang X, Du LR. Progress of hypoxia-1 in gynecotokology. Chinese Journal of Famliy Planning & Gynecotokology , 2014, 6(2): 14-17. 赵彩艳, 张欣, 杜丽荣. 低氧诱导因子-1在妇产科领域的研究进展. 中国计划生育和妇产科, 2014, 6(2): 14-17.
[58] Papler TB, Bokal EV, Tacer KF, Juvan P, Virant Klun I, Devjak R. Differences in cumulus cells gene expression between modified natural and stimulated in vitro fertilization cycles. J Assist Reprod Genet , 2014, 31(1): 79-88. |