遗传 ›› 2022, Vol. 44 ›› Issue (1): 46-58.doi: 10.16288/j.yczz.31-339
高珊珊(), 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍(), 于黎()
收稿日期:
2021-09-26
修回日期:
2021-11-22
出版日期:
2022-01-20
发布日期:
2022-01-25
通讯作者:
王晓萍,于黎
E-mail:gaoss961210@163.com;wangxp@ynu.edu.cn;yuli@ynu.edu.cn
作者简介:
高珊珊,在读硕士研究生,专业方向:遗传学。E-mail: 基金资助:
Shanshan Gao(), Jinliang Li, Jiani Yang, Tong Zhou, Rui Liu, Xiaoping Wang(), Li Yu()
Received:
2021-09-26
Revised:
2021-11-22
Online:
2022-01-20
Published:
2022-01-25
Contact:
Wang Xiaoping,Yu Li
E-mail:gaoss961210@163.com;wangxp@ynu.edu.cn;yuli@ynu.edu.cn
Supported by:
摘要:
运动形式的适应性演化与生物的捕食、防御、繁殖和通讯等生存行为紧密相关。哺乳动物演化出的多种多样的运动方式对占领新栖息地和获取新生存资源有着举足轻重的作用,其中滑翔和飞行能力是哺乳动物为适应环境而演化出的特殊运动形式,该类群动物已成为适应性演化研究的热点模型之一。为了适应生存,滑翔和飞行哺乳动物在形态、生理和行为方面都发生了一系列的适应性改变。近年来,随着基因组和转录组等高通量测序技术的日益发展,适应性演化研究进入了组学时代,能够更系统更全面地揭示适应性演化背后的分子基础。本文对哺乳动物滑翔和飞行能力的起源、适应性形态特征,包括翼膜和肢体演化,以及能量代谢等生理特征及其分子机制方面的研究进展进行了综述,以期为今后开展哺乳动物运动方式适应性演化的分子机制研究提供理论基础,同时对该类群研究所面临的挑战和未来的研究方向进行了展望。
本文勘误:见 遗传, 2022, Vol. 44 (6): 530. doi: 10.16288/j.yczz.22-211
高珊珊, 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍, 于黎. 哺乳动物滑翔和飞行性状适应性演化研究进展[J]. 遗传, 2022, 44(1): 46-58.
Shanshan Gao, Jinliang Li, Jiani Yang, Tong Zhou, Rui Liu, Xiaoping Wang, Li Yu. Progresses on adaptive evolution of gliding and flying ability in mammals[J]. Hereditas(Beijing), 2022, 44(1): 46-58.
表1
蝙蝠翼膜和骨骼适应性演化的分子机制总结"
适应性状 | 基因/转录因子 | 通路 | 研究方法 | 参考文献 |
---|---|---|---|---|
骨骼 | Bmp2 | Bmp信号通路 | 免疫荧光技术和 | [ |
实时荧光半定量PCR | ||||
翼膜 | Fgf8 | Bmp信号通路 | 原位杂交技术 | [ |
骨骼 | Prx1 | — | 原位杂交技术和 | [ |
免疫组织化学 | ||||
骨骼和翼膜 | Shh、Ptc1 | Shh-Fgf信号通路 | 原位杂交技术 | [ |
骨骼 | Tbx3、Tbx1、 | Bmp信号通路 | 高通量测序 | [ |
Bmp3、Rgmb | 标签测序法 | |||
Smad1、Smad4 | 实时荧光定量PCR | |||
Nog、Hoxd8 | ||||
Hoxd9、Hoxa1 | ||||
Satb1、Twist1 | ||||
Tmeff2、Enpp2 | ||||
翼膜 | Fgf10 | Fgf信号通路 | 基因克隆和基因表达分析 | [ |
骨骼和翼膜 | Tbx3、Hoxd9 | — | 高通量测序 | [56] |
Hoxd10、Hoxd11 | mRNA测序 | |||
Hoxd12、Hoxd13 | 原位杂交技术 | |||
Fam5c | ||||
骨骼 | Mllt3、Lhx8、 | Bmp、FGF和 | 高通量测序 | [ |
Tbx5-as1、Hottip | Wnt/β-catenin信号通路 | 转录组测序 | ||
原位杂交技术 | ||||
结合位点分析法 | ||||
骨骼 | BAR116 | — | 结合位点分析法 | [ |
[1] | Stern DL. The genetic causes of convergent evolution. Nat Rev Genet, 2013, 14(11):751-764. |
[2] |
Berens AJ, Hunt JH, Toth AL. Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol Biol Evol, 2015, 32(3):690-703.
doi: 10.1093/molbev/msu330 pmid: 25492498 |
[3] | Wilson DE, Reeder DM. Mammal species of the world: a taxonomic and geographic reference. J Mammal, 2007, 88(3):824-830. |
[4] |
Grossnickle DM, Chen M, Wauer JGA, Pevsner SK, Weaver LN, Meng QJ, Liu D, Zhang YG, Luo ZX. Incomplete convergence of gliding mammal skeletons. Evolution, 2020, 74(12):2662-2680.
doi: 10.1111/evo.v74.12 |
[5] | Stephen J. Gliding mammals of the world. Collingwood, Australia: CSIRO Publishing, 2012. |
[6] |
Futuyma DJ. The evolution of evolutionary ecology. Isr J Ecol Evol, 2013, 59(4):172-180.
doi: 10.1080/15659801.2013.857227 |
[7] |
Jackson SM. Glide angle in the genus Petaurus and a review of gliding in mammals. Mammal Rev, 2002, 30(1):9-30.
doi: 10.1046/j.1365-2907.2000.00056.x |
[8] |
Asari Y, Yanagawa H, Oshida T. Gliding ability of the siberian flying squirrelPteromys volans orii. Mamm Study, 2012, 32:151-154.
doi: 10.3106/1348-6160(2007)32[151:GAOTSF]2.0.CO;2 |
[9] |
Bayona-Bafaluy MP, Müller S, Moraes CT. Fast adaptive coevolution of nuclear and mitochondrial subunits of ATP synthetase in orangutan. Mol Biol Evol, 2005, 22(3):716-724.
pmid: 15574809 |
[10] |
Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ,. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 2005, 307(5709):580-584.
pmid: 15681385 |
[11] |
Paskins KE, Bowyer A, Megill WM, Scheibe JS. Take-off and landing forces and the evolution of controlled gliding in northern flying squirrelsGlaucomys sabrinus. J Exp Biol, 2007, 210(Pt 8):1413-1423.
doi: 10.1242/jeb.02747 |
[12] |
Bishop KL. The relationship between 3-D kinematics and gliding performance in the southern flying squirrel,Glaucomys volans. J Exp Biol, 2006, 209(Pt 4):689-701.
doi: 10.1242/jeb.02062 |
[13] |
Thorington RW, Karolyn D, Gregory AC. Wing tip anatomy and aerodynamics in flying squirrels. J Mammal, 1998, 79(1):245-250.
doi: 10.2307/1382860 |
[14] | Waldman RM, Breuer KS. Shape, lift, and vibrations of highly compliant membrane wings. In: Aiaa Fluid Dynamics Conference, 2013. |
[15] | Schunk C, Swartz SM, Breuer KS. The effect of wing stroke and aspect ratio on the force generation a compliant membrane flapping wing. In: 68th Annual Meeting of the APS Division of Fluid Dynamics, 2015. |
[16] |
Wei S, Chen SY, Shi SK, Li X, Zhang X, Hu WL, Wang HP. Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohyd Polym, 2009, 75(1):110-114.
doi: 10.1016/j.carbpol.2008.07.006 |
[17] |
Tokita M, Abe T, Suzuki K. The developmental basis of bat wing muscle. Nat Commun, 2012, 3:1302
doi: 10.1038/ncomms2298 |
[18] |
Zheng J, Madison LD, Oliver D, Fakler B, Dallos P. Prestin, the motor protein of outer hair cells. Audiol Neurotol, 2002, 7(1):9-12.
doi: 10.1159/000046855 |
[19] |
Liberman MC, Gao JG, He DZZ, Wu XD, Jia SP, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 2002, 419(6904):300-304.
doi: 10.1038/nature01059 |
[20] |
Rand DM. The units of selection on mitochondrial DNA. Annu Rev Ecol Syst, 2001, 32(1):415-448.
doi: 10.1146/ecolsys.2001.32.issue-1 |
[21] |
Franchini LF, Elgoyhen AB. Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Mol Phylogenet Evol, 2006, 41(3):622-635.
pmid: 16854604 |
[22] | Jones G, Teeling EC, Rossiter SJ. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol, 2013, 4:117-121. |
[23] |
Li G, Wang JH, Rossiter SJ, Jones G, Cotton JA, Zhang SY. The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA, 2008, 105(37):13959-13964.
doi: 10.1073/pnas.0802097105 |
[24] |
Meng QJ, Grossnickle DM, Di L, Zhang YG, Neander AI, Ji Q, Luo ZX. New gliding mammaliaforms from the Jurassic. Nature, 2017, 548(7667):291-296.
doi: 10.1038/nature23476 |
[25] |
Luo ZX, Meng QJ, Grossnickle DM, Liu D, Neander AI, Zhang YG, Ji Q. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature, 2017, 548(7667):326-329.
doi: 10.1038/nature23483 |
[26] |
Meng J, Hu YM, Wang YQ, Wang XL, Li CK. A mesozoic gliding mammal from northeastern China. Nature, 2006, 444(7121):889-893.
doi: 10.1038/nature05234 |
[27] |
Jepsen GL. Early eocene bat from wyoming. Science, 1966, 154(3754):1333-1339.
pmid: 17770307 |
[28] |
Simmons NB, Seymour KL, Habersetzer J, Gunnell GF. Primitive early eocene bat from Wyoming and the evolution of flight and echolocation. Nature, 2008, 451(7180):818-821.
doi: 10.1038/nature06549 |
[29] |
Clyde WC, Sheldon ND, Koch PL, Gunnell GF, Bartels WS. Linking the Wasatchian/Bridgerian boundary to the cenozoic global climate optimum: new magnetostratigraphic and isotopic results from south pass, Wyoming. Palaeogeogr Palaeocl, 2001, 167(1):175-199.
doi: 10.1016/S0031-0182(00)00238-8 |
[30] | Simmons NB, Geisler JH. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. B Am Mus Nat Hist, 1998, 235(235):4-169. |
[31] | Paul AR, Susan MS. Ecology, evolution, and behaviour of bats. In: Symposia of the Zoological Society of London, 1995. |
[32] | Smith JD. Comments on flight and the evolution of bats. In: Major Patterns in Vertebrate Evolution. New York: Plenum Press, 1977, 427-437. |
[33] | Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Am Anthropol, 1860, 25(50):367-404. |
[34] | Norberg UM. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. New York: Springer- Verlag Berlin Heidelberg, 1990. |
[35] |
Socha JJ, Jafari F, Munk Y, Byrnes G. How animals glide: from trajectory to morphology. Can J Zool, 2015, 93(24):901-924.
doi: 10.1139/cjz-2014-0013 |
[36] | Robert D, Greg B, Stephen PY, Brendan B, Rafe MB, Jimmy AM. Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu Rev Ecol Evol S, 2007, 38(1):179-201. |
[37] |
Endo H, Yokokawa K, Kurohmaru M, Hayashi Y. Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps). Ann Anat, 1998, 180(1):93-96.
pmid: 9488912 |
[38] | Zhu J. Adaptation of the forelimbs of the flying squirrel (Pteromys volans L. ) to gliding. Curr Zool, 1959, (2):139-145. |
朱靖. 鼯鼠(Pteromys volans L. )前肢对滑翔运动的适应. 动物学报, 1959, (2):139-145. | |
[39] |
Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. Molecular and genomic data identify the closest living relative of primates. Science, 2007, 318(5851):792-794.
pmid: 17975064 |
[40] |
Taylor BD, Goldingay RL. Squirrel gliders use roadside glide poles to cross a road gap. Aust Mammal, 2013, 35(1):119.
doi: 10.1071/AM12013 |
[41] | Von BR, Swartz SM, Voigt CC. Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata. J Exp Biol, 2013, 216(11):2073-2080. |
[42] |
Hockman D, Mason MK, Jacobs DS, Illing N. The role of early development in mammalian limb diversification: A descriptive comparison of early limb development between the natal long-fingered bat (Miniopterus natalensis) and the mouse(Mus musculus). Dev Dynam, 2010, 238(4):965-979.
doi: 10.1002/dvdy.21896 |
[43] |
Sears KE, Behringer RR, Rasweiler JJ, Niswander LA. Development of bat flight: morphologic and molecular evolution of bat wing digits. Proc Natl Acad Sci USA, 2006, 103(17):6581-6586.
doi: 10.1073/pnas.0509716103 |
[44] |
Wang Z, Dong D, Ru BH, Young RL, Han NJ, Guo TT, Zhang SY. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics, 2010, 11(1):619.
doi: 10.1186/1471-2164-11-619 |
[45] |
Mason VC, Li G, Minx P, Schmitz J, Churakov G, Doronina L, Melin AD, Dominy NJ, Lim NTL, Springer MS, Wilson RK, Warren WC, Helgen KM, Murphy WJ. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates. Sci Adv, 2016, 2(8):e1600633.
doi: 10.1126/sciadv.1600633 |
[46] | Rong NN. A skillful glider among rocks and forests flying squirrel. Cult Geogr, 2013, (6):130-139. |
荣楠楠. 飞鼠为什么会飞?山林间的滑翔高手. 环球人文地理, 2013, (6):130-139. | |
[47] | Gupta BB. Notes on the gliding mechanism in the flying squirrel. American: University of Michigan Museum of Zoology, 1966. |
[48] |
Speakman JR. The evolution of flight and echolocation in bats: another leap in the dark. Mammal Rev, 2001, 31(2):111-130.
doi: 10.1046/j.1365-2907.2001.00082.x |
[49] |
Stafford BJ, Jr TRW. Carpal development and morphology in archontan mammals. J Morphol, 1998, 235(2):135-155.
pmid: 9438973 |
[50] |
Oshida T, Hachiya N, Yoshida MC, Ohtaishi N. Comparative anatomical note on the origin of the long accessory styliform cartilage of the Japanese giant flying squirrel, Petaurista leucogenys. Mamm Study, 2000, 25(1):35-39.
doi: 10.3106/mammalstudy.25.35 |
[51] |
Thorington RW, Stafford BJ. Homologies of the carpal bones in flying squirrels (Pteromyinae): a review. Mamm Study, 2001, 26(1):61-68.
doi: 10.3106/mammalstudy.26.61 |
[52] |
Kawashima T, Thorington Jr RW, Bohaska PW, Sato F. Evolutionary transformation of the palmaris Longus muscle in flying squirrels (Pteromyini: Sciuridae): an anatomical consideration of the origin of the uniquely specialized styliform cartilage. Anat Rec, 2017, 300(2):340-352.
doi: 10.1002/ar.v300.2 |
[53] | MacPhee RDE. Primates and their relatives in phylogenetic perspective. New York: Plenum Press, 1993, 63-90. |
[54] |
Geng WH, Wang XP, Che LF, Wang X, liu R, Zhou T, Roos C, Irwin D, Yu L. Convergent evolution of locomotory modes in Euarchontoglires. Front Ecol Evol, 2020, 8:615862.
doi: 10.3389/fevo.2020.615862 |
[55] |
Morris PJR, Cobb SNF, Cox PG. Convergent evolution in the Euarchontoglires. Biol Lett, 2018, 14(8):20180366.
doi: 10.1098/rsbl.2018.0366 |
[56] | Wang Z, Dai MY, Wang Y, Cooper KL, Zhu TT, Dong D, Zhang JP, Zhang YS. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight. Proc Biol Sci, 2014, 281(1783):20133133. |
[57] |
Norberg UM. Bat wing structures important for aerodynamics and rigidity (Mammalia, Chiroptera). Zeitschrift für Morphologie der Tiere, 1972, 73(1):45-61.
doi: 10.1007/BF00418147 |
[58] |
Konow N, Swartz SM. Advances in the study of bat flight: the wing and the wind1. Can J Zool, 2015, 93(12):977-990.
doi: 10.1139/cjz-2015-0117 |
[59] | Phamduy P, Vazquez M. Design and characterization of a miniature free-swimming robotic fish based on multi-material 3D printing. Int J Intell Robot, 2017, 1(2):209-223. |
[60] |
Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA, 2006, 103(41):15103-15107.
doi: 10.1073/pnas.0604934103 |
[61] |
Hockman D, Cretekos CJ, Mason MK, Behringer RR, Jacobs DS, Illing N. A second wave of sonic hedgehog expression during the development of the bat limb. Proc Natl Acad Sci USA, 2008, 105(44):16982-16987.
doi: 10.1073/pnas.0805308105 |
[62] |
Hutcheon JM, Kirsch J. Camping in a different tree: results of molecular systematic studies of bats using DNA-DNA Hybridization. J Mammal Evol, 2004, 11(1):17-47.
doi: 10.1023/B:JOMM.0000029144.80747.d2 |
[63] |
Eick GN, Jacobs DS, Matthee CA. A Nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol, 2005, 22(9):1869-1886.
doi: 10.1093/molbev/msi180 |
[64] |
Cooper LN, Cretekos CJ, Sears KE. The evolution and development of mammalian flight. Wiley Interdiscip Rev Dev Biol, 2012, 1(5):773-779.
doi: 10.1002/wdev.50 |
[65] |
Cretekos CJ, Wang Y, Green ED, Martin JF, Rasweiler JJ, Behringer RR. Regulatory divergence modifies limb length between mammals. Gene Dev, 2008, 22(2):141-151.
doi: 10.1101/gad.1620408 pmid: 18198333 |
[66] | Wang Z, Zhang SY. Recent studies on the evolution of mammalian flight using high-throughput sequencing technology. Chin Sci Bull, 2017(7):631-634. |
王喆, 张树义. 高通量测序解析哺乳动物飞行进化的分子机制. 科学通报, 2017(7):631-634. | |
[67] |
Eckalbar WL, Schlebusch SA, Mason MK, Gill Z, Parker AV, Booker BM, Nishizaki S, Muswamba-Nday C, Terhune E, Nevonen KA, Makki N, Friedrich T, VanderMeer JE, Pollard KS, Carbone L, Wall JD, Illing N, Ahituv N. Transcriptomic and epigenomic characterization of the developing bat wing. Nat Genet, 2016, 48(5):528-536.
doi: 10.1038/ng.3537 pmid: 27019111 |
[68] |
Collins EC, Appert A, Ariza ML, Pannell R, Yamada Y, Rabbitts TH. Mouse Af9 Is a controller of embryo patterning, like mlll, whose human homologue fuses with AF9 after chromosomal translocation in leukemia. Mol Cell Biol, 2002, 22(20):7313-7324.
doi: 10.1128/MCB.22.20.7313-7324.2002 pmid: 12242306 |
[69] |
Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein J, Westphal H. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci USA, 2003, 100(15):9005-9010.
doi: 10.1073/pnas.1537759100 |
[70] |
Booker BM, Friedrich T, Mason MK, VanderMeer JE, Zhao J, Eckalbar WL, Logan M, Illing N, Pollard KS, Ahituv N. Bat accelerated regions Identify a bat forelimb specific enhancer in the hoxd locus. PLoS Genet, 2016, 12(3):e1005738.
doi: 10.1371/journal.pgen.1005738 |
[71] |
Storey E. Genetic cerebellar ataxias. Semin Neurol, 2014, 34(3):280-292.
doi: 10.1055/s-00000071 |
[72] |
Sussman RW, Rasmussen DT, Raven PH. Rethinking primate origins again. Am J Primatol, 2013, 75(2):95-106.
doi: 10.1002/ajp.22096 pmid: 23184701 |
[73] |
Byrnes G, Libby T, Lim NTL, Spence AJ. Gliding saves time but not energy in malayan colugos. J Exp Biol, 2011, 214(16):2690-2696.
doi: 10.1242/jeb.052993 |
[74] |
Flaherty EA, Ben DM, Smith WP. Quadrupedal locomotor performance in two species of arboreal squirrels: predicting energy savings of gliding. J Comp Physiol B, 2010, 180(7):1067-1078.
doi: 10.1007/s00360-010-0470-1 |
[75] |
Guigueno MF, Shoji A, Elliott KH, Aris BS. Flight costs in volant vertebrates: a phylogenetically-controlled meta- analysis of birds and bats. Comp Biochem Physiol A Mol Integr Physiol, 2019, 235:193-201.
doi: 10.1016/j.cbpa.2019.06.003 |
[76] |
Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA, 2010, 107(19):8666-8671.
doi: 10.1073/pnas.0912613107 |
[77] |
Whiteman JP, Greller KA, Harlow HJ, Felicetti LA, Rode K, Merav BD. Carbon isotopes in exhaled breath track metabolic substrates in brown bears (Ursus arctos). J Mammal, 2012, 93(2):413-421.
doi: 10.1644/11-MAMM-S-178.1 |
[78] |
Tang ZX, Yang ZF, Hu ZQ, Zhang D, Lu X, Jia B, Deng DX, Xu CW. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Mol Breeding, 2013, 31(1):1-14.
doi: 10.1007/s11032-012-9762-3 |
[79] |
Carolin K, Vina T, Da FRR, Hubisz MJ, Bustamante CD, Rasmus N, Adam S. Patterns of positive selection in six mammalian genomes. PLoS Genet, 2008, 4(8):e1000144.
doi: 10.1371/journal.pgen.1000144 |
[80] |
Kevin O, Li HP, Zhang ZP. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol, 2003, 23(18):6396-6405.
doi: 10.1128/MCB.23.18.6396-6405.2003 |
[81] |
Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. Embo Journal, 1998, 17(2):554-564.
pmid: 9430646 |
[82] | Neuweiler G. The biology of bats. New York: Oxford University Press, 2000. |
[83] | Cheng SC, Wang XP, Yu L. Recent progress in convergent molecular evolution of animals based on multi-omics studies. Sci Sin Vitae, 2019(7):874-887. |
程绍臣, 王晓萍, 于黎. 基于多组学水平的动物分子趋同演化研究新进展. 中国科学: 生命科学, 2019(7):874-887. | |
[84] | Jiang M, Li HL, Pang PP, Han JS, Li Y, Zhang XN. Development and prospect of high-throughput single-cell transcriptome sequencing. Chin Bull Life Sci, 2020, 32(12):1280-1287. |
蒋敏, 李慧莉, 庞盼盼, 韩峻松, 李跃, 张晓娜. 高通量单细胞转录组测序发展与展望. 生命科学, 2020, 32(12):1280-1287. |
[1] | 杨阳, 储明星, 刘秋月. 生物钟作用机制及其对动物年节律产生的影响[J]. 遗传, 2023, 45(5): 409-424. |
[2] | 吕承安, 王若然, 孟卓贤. 2型糖尿病进程中胰岛β细胞功能变化的分子机制[J]. 遗传, 2022, 44(10): 840-852. |
[3] | 张祉靖, 乔钰, 孙宇晨, 雷蕾. 表观“阅读器”BET蛋白家族对哺乳动物发育和iPSC重编程的调控[J]. 遗传, 2022, 44(1): 36-45. |
[4] | 任恋, 吴秀山, 李永青. 组蛋白去乙酰化酶在调节心肌肥大过程中的作用机制[J]. 遗传, 2020, 42(6): 536-547. |
[5] | 薛宪词,于黎. 昆虫非遗传多型性研究进展[J]. 遗传, 2017, 39(9): 798-809. |
[6] | 杨芳,张宝云,冯光德,向伟,马云霞,陈航,储明星,王凭青. 卵巢低氧微环境调节哺乳动物排卵的分子机制[J]. 遗传, 2016, 38(2): 109-117. |
[7] | 李贵林, 牛丽莉, 刘海峰, 郭家中. 哺乳动物胰岛素样生长因子酸不稳定亚基的结构与功能[J]. 遗传, 2015, 37(12): 1185-1193. |
[8] | 梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展[J]. 遗传, 2015, 37(1): 25-33. |
[9] | 初芹, 李东, 侯诗宇, 石万海, 刘林, 王雅春. 基于DNA池测序法筛选奶牛高信息量SNP标记的可行性[J]. 遗传, 2014, 36(7): 691-696. |
[10] | 谷光明,王进科. 哺乳动物转录因子DNA结合谱[J]. 遗传, 2012, 34(8): 950-968. |
[11] | 许传铭,万福生. 哺乳动物Hippo信号通路:肿瘤治疗的新标靶[J]. 遗传, 2012, 34(3): 269-280. |
[12] | 危金普,潘学峰,李红权,段斐. 简单重复DNA序列在哺乳动物mtDNA D-loop区的分布及进化特征[J]. 遗传, 2011, 33(1): 67-74. |
[13] | 王香明,王丹巧,汪晓燕. 帕金森病相关基因功能研究进展[J]. 遗传, 2010, 32(8): 779-784. |
[14] | 于红. 表观遗传学: 生物细胞非编码RNA调控的研究进展[J]. 遗传, 2009, 31(11): 1077-1086. |
[15] | 许先国,刘瑛,洪小珍,马开荣,朱发明,吕杭军,严力行. 中国人罕见的cisAB变异型分子机制分析[J]. 遗传, 2008, 30(10): 1295-1300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: