遗传 ›› 2016, Vol. 38 ›› Issue (3): 227-242.doi: 10.16288/j.yczz.15-327
周想春1, 邢永忠1, 2
收稿日期:
2015-07-20
修回日期:
2016-01-04
出版日期:
2016-03-20
发布日期:
2016-03-20
通讯作者:
邢永忠,教授,博士生导师,研究方向:生物化学与分子生物学.
E-mail:yzxing@mail.hzau.edu.cn
作者简介:
周想春,博士研究生,研究方向:遗传学.E-mail: xiangchunzhou@sina.com
基金资助:
Xiangchun Zhou1, Yongzhong Xing1, 2
Received:
2015-07-20
Revised:
2016-01-04
Online:
2016-03-20
Published:
2016-03-20
Supported by:
摘要: 利用生物技术可以对植物基因组进行高效,精准,特异的修饰.锌指核酸酶(Zinc finger nucleases, ZFN),转录激活样效应因子核酸酶(Transcription activator-like effector nucleases, TALEN),成簇规律间隔短回文重复序列(Clustered regularly interspaced short palindromic repeats, CRISPR)/Cas9 (CRISPR-associated 9)是目前基因组编辑技术应用中的关键工程核酸酶.通过产生DNA双链断裂(Double-strand breaks, DSBs)激活植物内源修复途径(包括非同源粘性末端连接和同源重组修复),基因组编辑技术可以实现对靶位点的定点突变,缺失或者基因的插入与替换.基因组编辑已经被广泛地应用到各种植物的基因组修饰中,如拟南芥,水稻,烟草等.本文主要概述了基因组编辑技术在植物基因功能鉴定及作物遗传育种中的应用,并对其未来在作物精准改良中需要完善的相关问题进行了探讨.
周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3): 227-242.
Xiangchun Zhou, Yongzhong Xing. The application of genome editing in identification of plant gene function and crop breeding[J]. HEREDITAS(Beijing), 2016, 38(3): 227-242.
[1] Mauricio R. Mapping quantitative trait loci in plants: Uses and caveats for evolutionary biology. Nat Rev Genet , 2001, 2(5): 370-381. [2] Jorgensen R, Matzke M, Matzke AJM. Plants, RNAi, and the nobel prize. Science , 2006, 314(5803): 1242-1243. [3] Eamens A, Wang MB, Smith NA, Waterhouse PM. RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiol , 2008, 147(2): 456-468. [4] McGinnis KM. RNAi for functional genomics in plants. Brief Funct Genomics , 2010, 9(2): 111-117. [5] Koncz C, Németh K, Rédei GP, Schell J. T-DNA insertional mutagenesis in Arabidopsis . Plant Mol Biol , 1992, 20(5): 963-976. [6] Krysan PJ, Young JC, Sussman MR. T-DNA as an insertional mutagen in Arabidopsis . Plant Cell , 1999, 11(12): 2283-2290. [7] Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J , 2000, 22(6): 561-570. [8] Jung KH, An G. Functional characterization of rice genes using a gene-indexed T-DNA insertional mutant population. In: Yang YN, ed. Rice Protoc. Humana Press, 2013, 956: 57-67. [9] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell , 1987, 51(3): 503-512. [10] Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. Trends Genet , 1989, 5(3): 70-76. [11] Thomas KR, Capecchi MR. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature , 1986, 324(6092): 34-38. [12] Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific sites in the mammalian genome. Cell , 1986, 44(3): 419-428. [13] Doetschman T, Maeda N, Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci USA , 1988, 85(22): 8583-8587. [14] Koller BH, Smithies O. Inactivating the β 2 -microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc Natl Acad Sci USA , 1989, 86(22): 8932-8935. [15] Paszkowski J, Baur M, Bogucki A, Potrykus I. Gene targeting in plants. EMBO J , 1988, 7(13): 4021-4026. [16] Baur M, Potrykus I, Paszkowski J. Intermolecular homologous recombination in plants. Mol Cell Biol , 1990, 10(2): 492-500. [17] Lee KY, Lund P, Lowe K, Dunsmuir P. Homologous recombination in plant cells after Agrobacterium -mediated transformation. Plant Cell , 1990, 2(5): 415-425. [18] Offringa R, de Groot MJA, Haagsman HJ, Does MP, van den Elzen PJM, Hooykaas PJJ. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J , 1990, 9(10): 3077-3084. [19] Halfter U, Morris PC, Willmitzer L. Gene targeting in Arabidopsis thaliana . Mol Gen Genet , 1992, 231(2): 186-193. [20] Swoboda P, Gal S, Hohn B, Puchta H. Intrachromosomal homologous recombination in whole plants. EMBO J , 1994, 13(2): 484-489. [21] Miao ZH, Lam E. Targeted disruption of the TGA3 locus in Arabidopsis thaliana . Plant J , 1995, 7(2): 359-365. [22] Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res , 1993, 21(22): 5034-5040. [23] Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA , 1996, 93(10): 5055-5060. [24] Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H. In planta gene targeting. Proc Natl Acad Sci USA , 2012, 109(19): 7535-7540. [25] Wright DA, Townsend JA, Winfrey RJ, Jr., Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J , 2005, 44(4): 693-705. [26] Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A. Nontransgenic genome modification in plant cells. Plant Physiol , 2010, 154(3): 1079-1087. [27] Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell , 2014, 26(1): 151-163. [28] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok Ⅰ cleavage domain. Proc Natl Acad Sci USA , 1996, 93(3): 1156-1160. [29] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science , 2003, 300(5620): 764. [30] Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res , 2005, 33(18): 5978-5990. [31] Carroll D. Genome engineering with zinc-finger nucleases. Genetics , 2011, 188(4): 773-782. [32] Kim S, Kim JS. Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Rep , 2011, 5(1): 9-17. [33] Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys 2 His 2 zinc finger proteins. Annu Rev Biochem , 2001, 70: 313-340. [34] Bae KH, Do Kwon Y, Shin HC, Hwang MS, Ryu EH, Park KS, Yang HY, Lee DK, Lee Y, Park J, Kwon HS, Kim HW, Yeh BI, Lee HW, Sohn SH, Yoon J, Seol W, Kim JS. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol , 2003, 21(3): 275-280. [35] Segal DJ, Beerli RR, Blancafort P, Dreier B, Effertz K, Huber A, Koksch B, Lund CV, Magnenat L, Valente D, Barbas III CF. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA- binding proteins. Biochemistry , 2003, 42(7): 2137-2148. [36] Segal DJ, Dreier B, Beerli RR, Barbas III CF. Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5'- GNN-3' DNA target sequences. Proc Natl Acad Sci USA , 1999, 96(6): 2758-2763. [37] Beerli RR, Barbas III CF. Engineering polydactyl zinc- finger transcription factors. Nat Biotechnol , 2002, 20(2): 135-141. [38] Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu FL, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc , 2006, 1(3): 1637-1652. [39] Ramirez CL, Foley JE, Wright DA, Müller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu FL, Townsend JA, Cathomen T, Voytas DF, Joung JK. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods , 2008, 5(5): 374-375. [40] Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu FL, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Johhn Iafrate A, Dobbs D, McCray PB, Jr., Cathomen T, Voytas DF, Joung JK. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell , 2008, 31(2): 294-301. [41] Townsend JA, Wright DA, Winfrey RJ, Fu FL, Maeder ML, Joung JK, Voytas DF. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature , 2009, 459(7245): 442-445. [42] Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li XH, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA , 2010, 107(26): 12028-12033. [43] Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau- Beganny S, Qi YP, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JRJ, Joung JK. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods , 2011, 8(1): 67-69. [44] Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Keith Joung J, Voytas DF, Stupar RM. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol , 2011, 156(2): 466-473. [45] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science , 2009, 326(5959): 1509-1512. [46] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science , 2009, 326(5959): 1501. [47] Bogdanove AJ, Voytas DF. TAL effectors: Customizable proteins for DNA targeting. Science , 2011, 333(6051): 1843-1846. [48] Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics , 2010, 186(2): 757-761. [49] Baker M. Gene-editing nucleases. Nat Methods , 2012, 9(1): 23-26. [50] Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science , 2007, 318(5850): 648-651. [51] Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science , 2007, 318(5850): 645-648. [52] Boch J, Bonas U. Xanthomonas AvrBs3 Family-Type III effectors: Discovery and function. Annu Rev Phytopathol , 2010, 48: 419-436. [53] Bogdanove AJ, Schornack S, Lahaye T. TAL effectors: Finding plant genes for disease and defense. Curr Opin Plant Biol , 2010, 13(4): 394-401. [54] Deng D, Yan CY, Pan XJ, Mahfouz M, Wang JW, Zhu JK, Shi YG, Yan NE. Structural basis for sequence- specific recognition of DNA by TAL effectors. Science , 2012, 335(6069): 720-723. [55] Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science , 2012, 335(6069): 716-719. [56] Cong L, Zhou RH, Kuo YC, Cunniff M, Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun , 2012, 3(7): 968. [57] Streubel J, Blücher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol , 2012, 30(7): 593-595. [58] Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and Fok I DNA-cleavage domain. Nucleic Acids Res , 2011, 39(1): 359-372. [59] Mahfouz MM, Li LX, Shamimuzzaman M, Wibowo A, Fang XY, Zhu JK. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA , 2011, 108(6): 2623-2628. [60] Miller JC, Tan SY, Qiao GJ, Barlow KA, Wang JB, Xia DF, Meng XD, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol , 2011, 29(2): 143-148. [61] Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific tal effectors for modulating mammalian transcription. Nat Biotechnol , 2011, 29(2): 149-153. [62] Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res , 2011, 39(17): 7879. [63] Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res , 2011, 39(21): 9283-9293. [64] Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ. TAL effector-nucleotide targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Res , 2012, 40(W1): W117-W122. [65] Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: A one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One , 2009, 4(5): e5553. [66] Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng GP, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nature Protoc , 2012, 7(1): 171-192. [67] Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JRJ. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol , 2011, 29(8): 697-698. [68] Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol , 2012, 30(5): 460-465. [69] Heigwer F, Kerr G, Walther N, Glaeser K, Pelz O, Breinig M, Boutros M. E-TALEN: A web tool to design TALENs for genome engineering. Nucleic Acids Res , 2013, 41(20): e190. [70] Heigwer F, Kerr G, Boutros M. E-CRISP: Fast CRISPR target site identification. Nat Methods , 2014, 11(2): 122-123. [71] Ma M, Ye AY, Zheng W, Kong L. A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int , 2013, 2013: 270805. [72] Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li YQ, Fine EJ, Wu XB, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol , 2013, 31(9): 827-832. [73] Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL. CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant , 2014, 7(9): 1494- 1496. [74] Upadhyay SK, Sharma S. SSFinder: High throughput CRISPR-Cas target sites prediction tool. Biomed Res Int , 2014, 2014: 742482. [75] Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res , 2014, 42(W1): W401-W407. [76] Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: Software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics , 2015, 31(7): 1120-1123. [77] Xie KB, Zhang JW, Yang YN. Genome-wide prediction of highly specific guide RNA spacers for CRISPR- Cas9-mediated genome editing in model plants and major crops. Mol Plant , 2014, 7(5): 923-926. [78] Prykhozhij SV, Rajan V, Gaston D, Berman JN. CRISPR MultiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One , 2015, 10(3): e0119372 [79] Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo . Nat Methods , 2015, 12(10): 982-988. [80] Park J, Bae S, Kim JS. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics , 2015, 31(24): 4014-4016. [81] Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol , 2014, 32(12): 1262-1267. [82] Barrangou R. RNA-mediated programmable DNA cleavage. Nat Biotechnol , 2012, 30(9): 836-838. [83] Pennisi E. The CRISPR craze. Science , 2013, 341(6148): 833-836. [84] Li J, Zhang Y, Chen KL, Shan QW, Wang YP, Liang Z, Gao CX. CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas (Beijing) , 2013, 35(11): 1265-1273. 李君, 张毅, 陈坤玲, 单奇伟, 王延鹏, 梁振, 高彩霞. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273. [85] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821. [86] Cong L, Ann Ran F, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [87] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [88] Feng ZY, Zhang BT, Ding WN, Liu XD, Yang DL, Wei PL, Cao FQ, Zhu SH, Zhang F, Mao YF, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res , 2013, 23(10): 1229-1232. [89] Li JF, Norville JE, Aach J, McCormack M, Zhang DD, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol , 2013, 31(8): 688-691. [90] Mao YF, Zhang H, Xu NF, Zhang BT, Gou F, Zhu JK. Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant , 2013, 6(6): 2008-2011. [91] Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol , 2013, 31(8): 691-693. [92] Miao J, Guo DS, Zhang JZ, Huang QP, Qin GJ, Zhang X, Wan JM, Gu HY, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res , 2013, 23(10): 1233-1236. [93] Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JJ, Qiu JL, Gao C. Targeted genome modification of crop plants using a CRISPR- Cas system. Nat Biotechnol , 2013, 31(8): 686-688. [94] Li JF, Zhang D, Sheen J. Targeted plant genome editing via the CRISPR/Cas9 technology. Methods Mol Biol , 2015, 1284: 239-255. [95] Zhang H, Zhang JS, Wei PL, Zhang BT, Gou F, Feng ZY, Mao YF, Yang L, Zhang H, Xu NF, Zhu JK. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J , 2014, 12(6): 797-807. [96] Mao YF, Zhang ZJ, Feng ZY, Wei PL, Zhang H, Botella JR, Zhu JK. Development of germ-line-specific CRISPR- Cas9 systems to improve the production of heritable gene modifications in Arabidopsis . Plant Biotechnol J , 2015, doi:10.1111/pbi.12468. [97] Feng ZY, Mao YF, Xu NF, Zhang BT, Wei PL, Yang DL, Wang Z, Zhang ZJ, Zheng R, Yang L, Zeng L, Liu XD, Zhu JK. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis . Proc Natl Acad Sci USA , 2014, 111(12): 4632-4637. [98] Shan QW, Wang YP, Li J, Gao CX. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc , 2014, 9(10): 2395-2410. [99] Xie KB, Yang YN. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant , 2013, 6(6): 1975-1983. [100] Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA , 2015, 112(11): 3570-3575. [101] Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis , tobacco, Sorghum and rice. Nucleic Acids Res , 2013, 41(20): e188. [102] Jiang WZ, Yang B, Weeks DP. Efficient CRISPR/Cas9- mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One , 2014, 9(6): e99225. [103] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol , 2014, 14: 327. [104] Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol , 2015, 16: 144. [105] Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, Wang B, Yang ZF, Li HY, Lin YR, Xie YY, Shen RX, Chen SF, Wang Z, Chen YL, Guo JX, Chen LT, Zhao XC, Dong ZC, Liu YG. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant , 2015, 8(8): 1274-1284. [106] Alberts B. The breakthroughs of 2012. Science , 2012, 338(6114): 1511. [107] Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng ZL, Gonzales APW, Li ZY, Peterson RT, Yeh JRJ, Aryee MJ, Joung JK. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature , 2015, 523(7561): 481-485. [108] Wyman C, Kanaar R. DNA double-strand break repair: All's well that ends well. Annu Rev Genet , 2006, 40: 363-383. [109] Lloyd A, Plaisier CL, Carroll D, Drews GN. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis . Proc Natl Acad Sci USA , 2005, 102(6): 2232-2237. [110] Osakabe K, Osakabe Y, Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA , 2010, 107(26): 12034-12039. [111] Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Gao ZF, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature , 2009, 459(7245): 437-441. [112] Christian M, Qi YP, Zhang Y, Voytas DF. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3-Genes Genom Genet , 2013, 3(10): 1697-1705. [113] Li T, Liu B, Spalding MH, Weeks DP, Yang B. High- efficiency TALEN-based gene editing produces disease- resistant rice. Nat Biotechnol , 2012, 30(5): 390-392. [114] Shan QW, Wang YP, Chen KL, Liang Z, Li J, Zhang Y, Zhang K, Liu JX, Voytas DF, Zheng XL, Zhang Y, Gao CX. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant , 2013, 6(4): 1365-1368. [115] Liang Z, Zhang K, Chen KL, Gao CX. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genomics , 2014, 41(2): 63-68. [116] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew . Nat Biotechnol , 2014, 32(9): 947-951. [117] Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol , 2013, 83(3): 279-285. [118] Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. Plos One , 2014, 9(3): e92046. [119] de Pater S, Pinas JE, Hooykaas PJ, van der Zaal BJ. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium - mediated floral dip transformation. Plant Biotechnol J , 2013, 11(4): 510-515. [120] Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J , 2014, 80(6): 1139-1150. [121] Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3 (Bethesda) , 2013, 3(12): 2233-2238. [122] Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods , 2013, 9(1): 39. [123] Cai CQ, Doyon Y, Ainley WM, Miller JC, DeKelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF. Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol , 2009, 69(6): 699-709. [124] Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol , 2013, 161(1): 20-27. [125] Collins NC, Tardieu F, Tuberosa R. Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physio , 2008, 147(2): 469-486. [126] Wollenweber B, Porter JR, Lubberstedt T. Need for multidisciplinary research towards a second green revolution - commentary. Curr Opin Plant Biol , 2005, 8(3): 337-341. [127] Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res , 2014, 42(17): 10903-10914. [128] Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J , 2015, 13(6): 791-800. [129] Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J , 2014, 12(7): 934-940. [130] Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J , 2016, 14(1): 169-176. [131] Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun , 2015, 467(1): 76-82. [132] Lyer-Pascuzzi AS, Jiang H, Huang L, McCouch SR. Genetic and functional characterization of the rice Bacterial Blight disease resistance gene xa5 . Phytopathology , 2008, 98(3): 289-295. [133] Antony G, Zhou JH, Huang S, Li T, Liu B, White F, Yang B. Rice xa13 recessive resistance to Bacterial Blight is defeated by induction of the disease susceptibility gene Os-11N3 . Plant Cell , 2010, 22(11): 3864- 3876. [134] Zheng W, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas (Beijing) , 2015, 37(10): 1003-1010. 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37(10): 1003-1010. [135] Shan QW, Gao CX. Research progress of genome editing and derivative technologies in plants. Hereditas (Beijing) , 2015, 37(10): 953-973. 单奇伟, 高彩霞. 植物基因组编辑及衍生技术最新研究进展. 遗传, 2015, 37(10): 953-973. |
[1] | 郑晓飞,黄海燕,吴强. 染色质架构蛋白CTCF调控UGT1基因簇的表达[J]. 遗传, 2019, 41(6): 509-523. |
[2] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[3] | 张楷, 刘蔚, 刘小凤, 陈瑶生, 刘小红, 何祖勇. 利用CRISPR/Cas9系统构建人HPRT1基因定点突变细胞株[J]. 遗传, 2019, 41(10): 939-949. |
[4] | 刘恒, 李东明, 朱兰玉, 赖乐锦, 闫婉云, 陆玉双, 韦伊, 黄月琪, 方媚, 苏元港, 杨芳, 舒伟. 利用CRISPR/Cas9敲除人源细胞系中LMNA基因的研究[J]. 遗传, 2019, 41(1): 66-75. |
[5] | 任云晓, 肖茹丹, 娄晓敏, 方向东. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
[6] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[7] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[8] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[9] | 李慧卿, 陈超, 陈冉冉, 宋雪薇, 李佶娜, 朱延明, 丁晓东. 利用CRISPR/Cas9双基因敲除系统初步解析大豆GmSnRK1.1和GmSnRK1.2对ABA及碱胁迫的响应[J]. 遗传, 2018, 40(6): 496-507. |
[10] | 梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[11] | 童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
[12] | 谢晶, 范辰, 张景龙, 张仕强. Ash2l-1/Ash2l-2在小鼠胚胎干细胞中的表达特异性及互补效应[J]. 遗传, 2018, 40(3): 237-249. |
[13] | 刘佳伟,洪涛,秦鑫,梁英民,张萍. β-血红蛋白病基因组编辑治疗的研究进展[J]. 遗传, 2018, 40(2): 95-103. |
[14] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[15] | 刘旭, 张平, 张晓枫, 李兴, 白宇, 贾克荣, 郭晓东, 张豪, 马晓燕, 仓明, 刘东军, 郭旭东. 利用CRISPR/Cas9系统构建FGF21基因敲除小鼠模型[J]. 遗传, 2018, 40(1): 66-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: