[1] Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell , 2009, 137(7): 1194-1211. [2] Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet , 2014, 15(4): 234-246. [3] Cuddapah S, Jothi R, Schones DE, Roh TY, Cui KR, Zhao KJ. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res , 2009, 19(1): 24-32. [4] Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature , 1998, 391(6669): 806-811. [5] Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry , 2002, 41(14): 4503-4510. [6] Rakhit R, Navarro R, Wandless TJ. Chemical biology strategies for posttranslational control of protein function. Chem Biol , 2014, 21(9): 1238-1252. [7] Kadauke S, Udugama MI, Pawlicki JM, Achtman JC, Jain DP, Cheng Y, Hardison RC, Blobel GA. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell , 2012, 150(4): 725-737. [8] Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One , 2011, 6(4): e18556. [9] Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA , 2008, 105(51): 20404-20409. [10] Krentz NAJ, Nian CL, Lynn FC. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PLoS One , 2014, 9(12): e114275. [11] Park A, Won ST, Pentecost M, Bartkowski W, Lee B. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function. PLoS One , 2014, 9(4): e95101. [12] Nakatake Y, Fujii S, Masui S, Sugimoto T, Torikai-Nishikawa S, Adachi K, Niwa H. Kinetics of drug selection systems in mouse embryonic stem cells. BMC Biotech , 2013, 13(1): 64. [13] Zheng W, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas(Beijing) , 2015 37(10): 1003-1010. 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37(10): 1003-1010. [14] Trevino AE, Zhang F. Chapter eight-Genome editing using Cas9 nickases. Methods Enzymol , 2014, 546: 161-174. [15] Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided Fok I nucleases for highly specific genome editing. Nat Biotechnol , 2014, 32(6): 569-576. [16] Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell , 2015, 161(5): 1012-1025. [17] Guo Y, Xu Q, Canzio D, Shou J, Li JH, Gorkin DU, Jung I, Wu HY, Zhai Y, Tang YX, Lu YC, Wu YH, Jia ZL, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell , 2015, 162(4): 900-910. [18] Guo Y, Wu Q. Gene editing system inversion of CTCF binding sites alters chromatin topological architecture and enhancer/promoter function. Hereditas(Beijing) , 2015, 37(10): 1073-1074. 郭亚, 吴强. 采用DNA片段编辑技术反转CTCF 结合位点改变基因组拓扑结构和增强子与启动子功能. 遗传, 2015, 37(10): 1073-1074. (责任编委: 张博) |