[1] | Vaiman D. Genes, epigenetics and miRNA regulation in the placenta. Placenta, 2016, doi: 10.1016/j.placenta. 2016.12.026. | [2] | Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science, 1999, 286(5439): 481-486. | [3] | Novakovic B, Saffery R. The ever growing complexity of placental epigenetics-role in adverse pregnancy outcomes and fetal programming. Placenta, 2012, 33(12): 959-970. | [4] | Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093. | [5] | Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaker JC, Loughna P, Stanier P, Moore GE. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med, 2007, 85(4): 379-387. | [6] | Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: A meta-analysis. Obstet Gynecol, 2004, 103(3): 551-563. | [7] | Diplas AI, Lambertini L, Lee MJ, Sperling R, Lee YL, Wetmur JG, Chen J. Differential expression of imprinted genes in normal and IUGR human placentas. Epigenetics, 2009, 4(4): 235-240. | [8] | Chandrasekharan MB, Huang F, Chen YC, Sun ZW. Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol, 2010, 30(13): 3216-3232. | [9] | Holt MT, David Y, Pollock S, Tang ZY, Jeon J, Kim J, Roeder RG, Muir TW. Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci USA, 2015, 112(33): 10365-10370. | [10] | Bird A. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-21. | [11] | Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen TP, Li E, Jenuwein T, Peters AHFM. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol, 2003, 13(14): 1192-1200. | [12] | Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 2007, 445(7124): 214-218. | [13] | Niessen HEC, Demmers JA, Voncken JW. Talking to chromatin: post-translational modulation of polycomb group function. Epigenetics Chromatin, 2009, 2: 10. | [14] | Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod, 2007, 13(4): 273-279. | [15] | Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AHFM. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell, 2008, 15(5): 668-679. | [16] | Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-DiNardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008, 32(2): 232-246. | [17] | Guo SW. The endometrial epigenome and its response to steroid hormones. Mol Cell Endocrinol, 2012, 358(2): 185-196. | [18] | Sakai N, Maruyama T, Sakurai R, Masuda H, Yamamoto Y, Shimizu A, Kishi I, Asada H, Yamagoe S, Yoshimura Y. Involvement of histone acetylation in ovarian steroid-induced decidualization of human endometrial stromal cells. J Biol Chem, 2003, 278(19): 16675-16682. | [19] | Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ. Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol, 2011, 25(11): 1892-1903. | [20] | Vincent ZL, Farquhar CM, Mitchell MD, Ponnampalam AP. Expression and Expression and regulation of DNA methyltransferases in human endometrium. Fertil Steril, 2011, 95(4): 1522-1525.e1. | [21] | Logan PC, Ponnampalam AP, Steiner M, Mitchell MD. Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod, 2013, 19(5): 302-312. | [22] | Logan PC, Ponnampalam AP, Rahnama F, Lobie PE, Mitchell MD. The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod, 2010, 25(11): 2859-2869. | [23] | Logan PC, Steiner M, Ponnampalam AP, Mitchell MD. Cell cycle regulation of human endometrial stromal cells during decidualization. Reprod Sci, 2012, 19(8): 883-894. | [24] | Tamura I, Sato S, Okada M, Tanabe M, Lee L, Maekawa R, Asada H, Yamagata Y, Tamura H, Sugino N. Importance of c/EBPβ binding and histone acetylation status in the promoter regions for induction of IGFBP-1, PRL, and Mn-SOD by cAMP in human endometrial stromal cells. Endocrinology, 2014, 155(1): 275-286. | [25] | Tamura I, Asada H, Maekawa R, Tanabe M, Lee L, Taketani T, Yamagata Y, Tamura H, Sugino N. Induction of IGFBP-1 expression by cAMP is associated with histone acetylation status of the promoter region in human endometrial stromal cells. Endocrinology, 2012, 153(11): 5612-5621. | [26] | Fogarty NME, Burton GJ, Ferguson-Smith AC. Different epigenetic states define syncytiotrophoblast and cytotrophoblast nuclei in the trophoblast of the human placenta. Placenta, 2015, 36(8): 796-802. | [27] | Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K. Epigenetic control of mouse oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem, 2004, 279(17): 17063-17069. | [28] | Matou?ková M, Bla?ková J, Pajer P, Pavli?ek A, Hejnar J. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp Cell Res, 2006, 312(7): 1011-1020. | [29] | Trejbalová K, Bla?ková J, Matou?ková M, Ku?erová D, Pecnová L, Vernerová Z, Herá?ek J, Hirsch I, Hejnar J. Epigenetic regulation of transcription and splicing of syncytins, fusogenic glycoproteins of retroviral origin. Nucleic Acids Res, 2011, 39(20): 8728-8739. | [30] | ?erman L, Vlahovi? M, ?ijan M, Buli?-Jaku? F, ?erman A, Sin?i? N, Matijevi? R, Juri?-Leki? G, Katu?i? A. The impact of 5-azacytidine on placental weight, glycolprotein pattern and proliferating cell nuclear antigen expression in rat placenta. Placenta, 2007, 28(8-9): 803-811. | [31] | Rahnama F, Shafiei F, Gluckman PD, Mitchell MD, Lobie PE. Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology, 2006, 147(11): 5275-5283. | [32] | Nelissen EC, van Montfoort APA, Dumoulin JCM, Evers JLH. Epigenetics and the placenta. Hum Reprod Update, 2011, 17(3): 397-417. | [33] | Bellido ML, Radpour R, Lapaire O, De Bie I, H?sli I, Bitzer J, Hmadcha A, Zhong XY, Holzgreve W. MALDI-TOF mass array analysis of RASSF1A and SERPINB5 methylation patterns in human placenta and plasma. Biol Reprod, 2010, 82(4): 745-750. | [34] | Saha B, Home P, Ray S, Larson M, Paul A, Rajendran G, Behr B, Paul S. EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol, 2013, 33(14): 2691-2705. | [35] | Tudisco L, Della Ragione F, Tarallo V, Apicella I, D'Esposito M, Matarazzo MR, De Falco S. Epigenetic control of hypoxia inducible factor-1α- dependent expression of placental growth factor in hypoxic conditions. Epigenetics, 2014, 9(4): 600-610. | [36] | Chelbi ST, Doridot L, Mondon F, Dussour C, Rebourcet R, Busato F, Gascoin-Lachambre G, Barbaux S, Rigourd V, Mignot TM, Tost J, Vaiman D. Combination of promoter hypomethylation and PDX1 overexpression leads to TBX15 decrease in vascular IUGR placentas. Epigenetics, 2011, 6(2): 247-255. | [37] | Mousa AA, Strauss JF III, Walsh SW. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia. Hypertension, 2012, 59(6): 1249-1255. | [38] | Rambaldi MP, Pieralli A, Ottanelli S, Serena C, Simeone S, Mello G, Mecacci F. OS086. Methylation status of the HOXA13 promoter region in placental tissue of pregnancies complicated by early onset severe preeclampsia. Pregnancy Hypertens, 2012, 2(3): 224-225. | [39] | Mousa AA, Cappello RE, Estrada-Gutierrez G, Shukla J, Romero R, Strauss JF III, Walsh SW. Preeclampsia is associated with alterations in DNA methylation of genes involved in collagen metabolism. Am J Pathol, 2012, 181(4): 1455-1463. | [40] | Ma X, Zhang S, Yang SB, Wang XC, Zhu YR, Li ZY, Luan WM. The roles of maternal-effect proteins in the maintenance of genomic imprints. Hereditas (Beijing), 2014, 36(10): 959-964. | [40] | 马馨, 张胜, 杨树宝, 王晓晨, 朱屹然, 李子义, 栾维民. 母源效应蛋白在基因组印记维持中的作用. 遗传, 2014, 36(10): 959-964. | [41] | Zhu YR, Zhang ML, Zhai ZC, Zhao YJ, Ma X. Epigenetic regulation of genomic imprinting in germline cells and preimplantation embryos. Hereditas (Beijing), 2016, 38(2): 103-108. | [41] | 朱屹然, 张美玲, 翟志超, 赵云蛟, 马馨. 生殖细胞及早期胚胎基因组印记的表观调控. 遗传, 2016, 38(2): 103-108. | [42] | Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F. Deletion of peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet, 2006, 38(1): 101-106. | [43] | Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Constancia M. Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta, 2006, 27(Suppl. l): 98-102. | [44] | Salas M, John R, Saxena A, Barton S, Frank D, Fitzpatrick G, Higgins MJ, Tycko B. Placental growth retardation due to loss of imprinting of phlda2. Mech Dev, 2004, 121(10): 1199-1210. | [45] | Haggarty P, Hoad G, Horgan GW, Campbell DM. DNA methyltransferase candidate polymorphisms, imprinting methylation, and birth outcome. PLoS One, 2013, 8(7): e68896. | [46] | Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, Abu-Amero S, Frost JM, Stafford JL, Chaoqun Y, Duncan AJ, Baigel R, Brimioulle M, Iglesias-Platas I, Apostolidou S, Aggarwal R, Whittaker JC, Syngelaki A, Nicolaides KH, Regan L, Monk D, Stanier P. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1663): 20140074. | [47] | Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69(6): 915-926. | [48] | Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science, 2001, 294(5551): 2536-2539. | [49] | Arima T, Hata K, Tanaka S, Kusumi M, Li E, Kato K, Shiota K, Sasaki H, Wake N. Loss of the maternal imprint in Dnmt3L mat-/- mice leads to a differentiation defect in the extraembryonic tissue. Dev Biol, 2006, 297(2): 361-373. | [50] | Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet, 2012, 205(3): 63-77. | [51] | Alders M, Hodges M, Hadjantonakis AK, Postmus J, van Wijk I, Bliek J, de Meulemeester M, Westerveld A, Guillemot F, Oudejans C, Little P, Mannens M. The human Achaete-Scute homologue 2 (ASCL2, HASH2) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet, 1997, 6(6): 859-867. | [52] | Shahib MN, Martaadisoebrata D, Kato H. Detection of HASH2 (ASCL2) gene expression in gestational trophoblastic disease. J Reprod Med, 2006, 51(11): 892-896. | [53] | van Dijk M, Oudejans C. ( Epi)genetics of pregnancy- associated diseases. Front Genet, 2013, 4: 180. | [54] | Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, Tomita M, Nakayama K. Deficiency in p57 kip2 expression induces preeclampsia- like symptoms in mice. Mol Hum Reprod, 2002, 8(12): 1129-1135. | [55] | Boeke CE, Baccarelli A, Kleinman KP, Burris HH, Litonjua AA, Rifas-Shiman SL, Tarantini L, Gillman M. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: Prospective results from a folate-replete population. Epigenetics, 2012, 7(3): 253-260. | [56] | Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC. Cadmium exposure and the epigenome: exposure- associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics, 2014, 9(2): 212-221. | [57] | Maccani JZJ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey KT. DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol, 2015, 57: 43-49. | [58] | Cheng RYS, Hockman T, Crawford E, Anderson LM, Shiao YH. Epigenetic and gene expression changes related to transgenerational carcinogenesis. Mol Carcinog, 2004, 40(1): 1-11. | [59] | Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet, 2011, 12(8): 529-541. | [60] | Suter MA, Aagaard K. What changes in DNA methylation take place in individuals exposed to maternal smoking in utero? Epigenomics, 2012, 4(2): 115-118. | [61] | Goodwin RD, Keyes K, Simuro N. Mental disorders and nicotine dependence among pregnant women in the united states. Obstet Gynecol, 2007, 109(4): 875-883. | [62] | Chhabra D, Sharma S, Kho AT, Gaedigk R, Vyhlidal CA, Leeder JS, Morrow J, Carey VJ, Weiss ST, Tantisira KG, DeMeo DL. Fetal lung and placental methylation is associated with in utero nicotine exposure. Epigenetics, 2014, 9(11): 1473-1484. | [63] | Maccani JZJ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics, 2013, 5(6): 619-630. | [64] | Paquette AG, Lesseur C, Armstrong DA, Koestler DC, Appleton AA, Lester BM, Marsit CJ. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics, 2013, 8(8): 796-801. | [65] | Suter M, Abramovici A, Showalter L, Hu M, Shope CD, Varner M, Aagaard-Tillery K. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism, 2010, 59(10): 1481-1490. | [66] | Suter M, Ma J, Harris AS, Patterson L, Brown KA, Shope C, Showalter L, Abramovici A, Aagaard-Tillery KM. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 2011, 6(11): 1284-1294. | [67] | Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes, 2008, 32(2): 201-210. | [68] | Lewis SJ, Zuccolo L, Davey Smith G, Macleod J, Rodriguez S, Draper ES, Barrow M, Alati R, Sayal K, Ring S, Golding J, Gray R. Fetal alcohol exposure and IQ at age 8: evidence from a population-based birth-cohort study. PLoS One, 2012, 7(11): e49407. | [69] | Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod, 2009, 81(4): 618-627. | [70] | Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, Gagne LA, Banister CE, Padbury JF, Marsit CJ. In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect, 2012, 120(2): 296-302. | [71] | Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cien Saude Colet, 2012, 17(2): 407-434. | [72] | Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet, 2013, 9(4): e1003401. | [73] | Fauque P, Mondon F, Letourneur F, Ripoche MA, Journot L, Barbaux S, Dandolo L, Patrat C, Wolf JP, Jouannet P, Jammes H, Vaiman D. In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model. PLoS One, 2010, 5(2): e9218. | [74] | Giritharan G, Talbi S, Donjacour A, Di Sebastiano F, Dobson AT, Rinaudo PF. Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction, 2007, 134(1): 63-72. | [75] | Giritharan G, Delle Piane L, Donjacour A, Esteban FJ, Horcajadas JA, Maltepe E, Rinaudo P. In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm. Reprod Sci, 2012, 19(3): 243-252. | [76] | Doherty AS, Mann MRW, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted h19 expression in the preimplantation mouse embryo. Biol Reprod, 2000, 62(6): 1526-1535. | [77] | Fauque P, Jouannet P, Lesaffre C, Ripoche MA, Dandolo L, Vaiman D, Jammes H. Assisted reproductive technology affects developmental kinetics, h19 imprinting control region methylation and h19 gene expression in individual mouse embryos. BMC Dev Biol, 2007, 7: 116. | [78] | Liang XW, Cui XS, Sun SC, Jin YX, Heo YT, Namgoong S, Kim NH. Superovulation induces defective methylation in line-1 retrotransposon elements in blastocyst. Reprod Biol Endocrinol, 2013, 11: 69. | [79] | Mann MRW, Lee SS, Doherty AS, Verona RI, Nolen LD, Schultz RM, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 2004, 131(15): 3727-3735. | [80] | Market-Velker BA, Fernandes AD, Mann MRW. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod, 2010, 83(6): 938-950. | [81] | Market-Velker BA, Zhang LY, Magri LS, Bonvissuto AC, Mann MRW. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet, 2010, 19(1): 36-51. | [82] | Nelissen ECM, Dumoulin JCM, Daunay A, Evers JLH, Tost J, van Montfoort APA. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the h19 and MEST differentially methylated regions. Hum Reprod, 2013, 28(4): 1117-1126. | [83] | Vincent RN, Gooding LD, Louie K, Chan Wong E, Ma S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil Steril, 2016, 106(3): 739-748.e3. | [84] | Zeschnigk M, Lich C, Buiting K, Doerfler W, Horsthemke B. A single-tube PCR test for the diagnosis of angelman and prader-willi syndrome based on allelic methylation differences at the SNRPN locus. Eur J Hum Genet, 1997, 5(2): 94-98. | [85] | Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update, 2015, 21(4): 555-557. | [86] | Vermeiden JPW, Bernardus RE. Are imprinting disorders more prevalent after human in vitro fertilezation or intracytoplasmic sperm injection? Fertil Steril, 2013, 99(3): 642-651. | [87] | Szczepańska M, Wirstlein P, ?uczak M, Jagodziński PP, Skrzypczak J. Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed Pharmacother, 2010, 64(10): 697-705. | [88] | Hossain MM, Tesfaye D, Salilew-Wondim D, Held E, Pr?ll MJ, Rings F, Kirfel G, Looft C, Tholen E, Uddin J, Schellander K, Hoelker M. Massive deregulation of miRNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics, 2014, 15: 43. | [89] | Brown K, Heller DS, Zamudio S, Illsley NP. Glucose transporter 3 (GLUT3) protein expression in human placenta across gestation. Placenta, 2011, 32(12): 1041-1049. | [90] | Novakovic B, Gordon L, Robinson WP, Desoye G, Saffery R. Glucose as a fetal nutrient: dynamic regulation of several glucose transporter genes by DNA methylation in the human placenta across gestation. J Nutr Biochem, 2013, 24(1): 282-288. | [91] | Xie XM, Gao HJ, Zeng WJ, Chen SH, Feng L, Deng DR, Qiao FY, Liao LH, McCormick K, Ning Q, Luo XP. Placental DNA methylation of peroxisome-proliferator- activated receptor-γ co-activator-1α promoter is associated with maternal gestational glucose level. Clin Sci, 2015, 129(4): 385-394. | [92] | Desgagné V, Hivert MF, St-Pierre J, Guay SP, Baillargeon JP, Perron P, Gaudet D, Brisson D, Bouchard L. Epigenetic dysregulation of the IGF system in placenta of newborns exposed to maternal impaired glucose tolerance. Epigenomics, 2014, 6(2): 193-207. | [93] | Waterland RA, Jirtle RL. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 2003, 23(15): 5293-5300. | [94] | Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, Chandak GR, Joshi SR. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics, 2013, 5: 6. | [95] | Sundrani DP, Reddy US, Chavan-Gautam PM, Mehendale SS, Chandak GR, Joshi SR. Altered methylation and expression patterns of genes regulating placental angiogenesis in preterm pregnancy. Reprod Sci, 2014, 21(12): 1508-1517. | [96] | Sie KKY, Li J, Ly A, Sohn KJ, Croxford R, Kim YI. Effect of maternal and postweaning folic acid supplementation on global and gene-specific DNA methylation in the liver of the rat offspring. Mol Nutr Food Res, 2013, 57(4): 677-685. | [97] | Mitsudome T, Mon H, Xu J, Li ZQ, Lee JM, Patil AA, Masuda A, Iiyama K, Morokuma D, Kusakabe T. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. Insect Biochem Mol Biol, 2015, 58: 55-65. | [98] | Liu XD, Wu X, Yin YL, Liu YQ, Geng MM, Yang HS, Blachier F, Wu GY. Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids, 2012, 42(6): 2111-2119. | [99] | Wei SQ, Audibert F, Luo ZC, Nuyt AM, Masse B, Julien P, Fraser WD, MIROS Study Group. Maternal plasma 25-hydroxyvitamin D levels, angiogenic factors, preeclampsia. Am J Obstet Gynecol, 2013, 208(5): 390. e1-396.e6. | [100] | Anderson CM, Ralph JL, Johnson L, Scheett A, Wright ML, Taylor JY, Ohm JE, Uthus E. First trimester vitamin D status and placental epigenomics in preeclampsia among northern plains primiparas. Life Sci, 2015, 129: 10-15. | [108] | Finn EH, Smith CL, Rodriguez J, Sidow A, Baker JC. Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. Dev Biol, 2014, 390(1): 80-92. | [109] | Zechner U, Hemberger M, Constancia M, Orth A, Dragatsis I, Lüttges A, Hameister H, Fundele R. Proliferation and growth factor expression in abnormally enlarged placentas of mouse interspecific hybrids. Dev Dyn, 2002, 224(2): 125-134. | [110] | Hemberger M, Kurz H, Orth A, Otto S, Lüttges A, Elliott R, Nagy A, Tan SS, Tam P, Zechner U, Fundele RH. Genetic and developmental analysis of X-inactivation in interspecific hybrid mice suggests a role for the Y chromosome in placental dysplasia. Genetics, 2001, 157(1): 341-348. | [111] | Herrmann D, Dahl JA, Lucas-Hahn A, Collas P, Niemann H. Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics, 2013, 8(3): 281-289. | [112] | Yuen RKC, Manokhina I, Robinson WP. Are we ready for DNA methylation-based prenatal testing? Epigenomics, 2011, 3(4): 387-390. | [113] | Yuen RKC, Pe?aherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet, 2010, 18(9): 1006-1012. | [114] | Koukoura O, Sifakis S, Zaravinos A, Apostolidou S, Jones A, Hajiioannou J, Widschwendter M, Spandidos DA. Hypomethylation along with increased h19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta, 2011, 32(1): 51-57. | [115] | Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, Guerneri S, Lalatta F, Cereda A, Sirchia S, Miozzo M, Tabano S. Beckwith-wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics, 2015, 10(7): 643-649. | [116] | Lim JH, Kim SY, Park SY, Lee SY, Kim MJ, Han YJ, Lee SW, Chung JH, Kim MY, Yang JH, Ryu HM. Non-invasive epigenetic detection of fetal trisomy 21 in first trimester maternal plasma. PLoS One, 2011, 6(11): e27709. | [117] | Tsui DWY, Lam YMD, Lee WS, Leung TY, Lau TK, Lau ET, Tang MHY, Akolekar R, Nicolaides KH, Chiu RWK, Lo YMD, Chim SSC. Systematic identification of placental epigenetic signatures for the noninvasive prenatal detection of edwards syndrome. PLoS One, 2010, 5(11): e15069. | [118] | Maccani JZJ, Maccani MA. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. Adv Genomics Genet, 2015, 2015(5): 205-214. | [119] | Hatt L, Aagaard MM, Graakjaer J, Bach C, Sommer S, Agerholm IE, K?lvraa S, Bojesen A. Microarray-based analysis of methylation status of CpGs in placental DNA and maternal blood DNA - potential new epigenetic biomarkers for cell free fetal DNA-based diagnosis. PLoS One, 2015, 10(7): e0128918. | [120] | Jung J, Moon JW, Choi JH, Lee YW, Park SH, Kim GJ. Epigenetic alterations of IL-6/STAT3 signaling by placental stem cells promote hepatic regeneration in a rat model with CCL4-induced liver injury. Int J Stem Cells, 2015, 8(1): 79-89. | [121] | Ocampo A, Reddy P, Martinez-Redondo P, Platero- Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, Araoka T, Vazquez-Ferrer E, Donoso D, Roman JL, Xu JN, Rodriguez Esteban C, Nu?ez G, Nu?ez Delicado E, Campistol JM, Guillen I, Guillen P, Izpisua Belmonte JC. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 2016, 167(7): 1719-1733.e12. |
|