[1] | Minch KJ, Rustad TR, Peterson EJR, Winkler J, Reiss DJ, Ma SY, Hickey M, Brabant W, Morrison B, Turkarslan S, Mawhinney C, Galagan JE, Price ND, Baliga NS, Sherman DR . The DNA-binding network of Mycobacterium tuberculosis. Nat Commun, 2015,6:5829. | [2] | WHO. Global tuberculosis report 2017. 2017. | [3] | Sosa ADJ, Byarugaba DK, Amábile-Cuevas CF, Hsueh PR, Kariuki S, Okeke IN . Antimicrobial Resistance in Developing Countries. New York: Springer, 2010. | [4] | Cole ST, Eisenach KD, McMurray DN, Jacobs WR, Jr. Tuberculosis and the Tubercle Bacillus. Washington,DC: ASM Press, 2005. | [5] | Wax RG, Lewis K, Salyers AA, Taber H. Bacterial Resistance to Antimicrobials. 2nd ed. Boca Raton: CRC Press, 2008. | [6] | Alvarez-Jiménez VD, Leyva-Paredes K, García-Martínez M, Vázquez-Flores L, García-Paredes VG, Campillo- Navarro M, Romo-Cruz I, Rosales-García VH, Castañeda-Casimiro J, González-Pozos S, Hernández JM, Wong-Baeza C, García-Pérez BE, Ortiz-Navarrete V, Estrada-Parra S, Serafin-López J, Wong-Baeza I, Chacón-Salinas R, Estrada-García I . Extracellular vesicles released from Mycobacterium tuberculosis- infected neutrophils promote macrophage autophagy and decrease intracellular mycobacterial survival.Front Immunol, 2018,9:272. | [7] | Da Costa AC, De Resende DP, de P. O. Santos B, Zoccal KF, Faccioli LH, Kipnis A, Junqueira-Kipnis AP. Modulation of macrophage responses by CMX, a fusion protein composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis. Front Microbiol, 2017,8:623. | [8] | Agnihotri J, Singh S, Wais M, Pathak A . Macrophage targeted cellular carriers for effective delivery of anti- tubercular drugs. Recent Pat Antiinfect Drug Discov, 2017,12(2):162-183. | [9] | Cambier CJ, Falkow S, Ramakrishnan L . Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell, 2014,159(7):1497-1509. | [10] | Wang C, Cui YH, Qu XJ . Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol, 2018,200(2):195-201. | [11] | Lund P, Tramonti A, De Biase D . Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev, 2014,38(6):1091-1125. | [12] | Guo XL, Liu HG . Study on the Effect of Toll-like Receptors in mediation of immune responses in Mycobacterium tuberculosis infection. Medical Recapitulate, 2015,21(12):2142-2145. | [12] | 郭雪玲, 刘辉国 . Toll样受体在介导结核分枝杆菌感染免疫反应中的作用. 医学综述, 2015,21(12):2142-2145. | [13] | Nkwouano V, Witkowski S, Rehberg N, Kalscheuer R, Nausch N, Mayatepek E, Jacobsen M . A novel mycobacterial in vitro infection assay identifies differences of induced macrophage apoptosis between CD4 + and CD8 + T cells. PLoS One , 2017,12(2):e0171817. | [14] | Liu YX, Zhang WJ . Progress of interactions between Mycobacterium tuberculosis and macrophages. Chin J Cell Biol, 2012,34(6):617-622. | [14] | 刘云霞, 张万江 . 结核分枝杆菌与巨噬细胞相互作用的研究进展. 中国细胞生物学学报, 2012,34(6):617-622. | [15] | Vandal OH, Nathan CF, Ehrt S . Acid resistance in Mycobacterium tuberculosis. J Bacteriol, 2009,191(15):4714-4721. | [16] | Huang L, Nazarova EV, Tan SM, Liu YC, Russell DG . Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med, 2018,215(4):1135-1152. | [17] | Queval CJ, Brosch R, Simeone R . The Macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol, 2017,8:2284. | [18] | Mahamed D, Boulle M, Ganga Y, Arthur CM, Skroch S, Oom L, Catinas O, Pillay K, Naicker M, Rampersad S, Mathonsi C, Hunter J, Wong EB, Suleman M, Sreejit G, Pym AS, Lustig G, Sigal A . Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife, 2017,6:e22028. | [19] | Nicolaou SA, Gaida SM, Papoutsakis ET . A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng, 2010,12(4):307-331. | [20] | De Biase D, Pennacchietti E . Glutamate decarboxylase- dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol, 2012,86(4):770-786. | [21] | Ge TD, Feng EL, Yan BJ, Wang HL, Huang LY . Construction of deletion mutant of Shigella flexneri acid resistance genes. Lett Biotechnol, 2005,16(5):488-491. | [21] | 葛堂栋, 冯尔玲, 晏本菊, 王恒樑, 黄留玉 . 痢疾杆菌酸抗性系统相关基因缺失突变体的构建. 生物技术通讯, 2005,16(5):488-491. | [22] | Shang L, Li W, Li LJ, Li L, Zhang SH, Li TT, Li YK, Liu L, Guo ZW, Zhou R, Chen HC. The generation of nalidixic acid-resistant strains and signature-tagged mutants of Actinobacillus pleuropneumoniae. Acta Microbiol Sin, 2008,48(1):73-79. | [22] | 商霖, 李薇, 李良军, 黎璐, 张四化, 李婷婷, 李耀坤, 刘磊, 郭志伟, 周锐, 陈焕春 . 胸膜肺炎放线杆菌萘啶酸抗性菌株的选育和信号标签突变株的构建. 微生物学报, 2008,48(1):73-79. | [23] | Shi XJ, Wang QL, Gao Q . Current research progress on acid resistance mechanism of Mycobacterium tuberculosis. J Micr Infect, 2013,8(3):192-196. | [23] | 施旭骏, 王晴岚, 高谦 . 结核分枝杆菌耐酸机制的研究进展. 微生物与感染, 2013,8(3):192-196. | [24] | Rohde KH, Abramovitch RB, Russell DG . Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe, 2007,2(5):352-364. | [25] | Su HB, Zhu SL, Zhu L, Kong C, Huang Q, Zhang Z, Wang HH, Xu Y . Mycobacterium tuberculosis latent antigen Rv2029c from the multistage DNA vaccine A39 drives TH1 responses via TLR-mediated macrophage activation. Front Microbiol, 2017,8:2266. | [26] | Brennan PJ, Vissa VD . Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr Rev, 2001,72(4):415-428. | [27] | Zhang C, Yang L, Zhao N, Zhao Y, Shi C . Insights into macrophage autophagy in latent tuberculosis infection: Role of Heat Shock Protein 16.3. DNA Cell Biol, 2018,37(5):424-448. | [28] | Deghmane AE, Soualhine H, Bach H, Sendide K, Itoh S, Tam A, Noubir S, Talal A, Lo R, Toyoshima S, Av-Gay Y, Hmama Z . Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation. J Cell Sci, 2007,120(Pt 16):2796-2806. | [29] | Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, Vandal O, Craik CS, Ehrt S. Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis. J Biol Chem, 2013,288(18):12489-12499. | [30] | Banaiee N, Jacobs WR, Ernst JD . LspA-independent action of globomycin on Mycobacterium tuberculosis. J Antimicrob Chemother, 2007,60(2):414-416. | [31] | Rampini SK, Selchow P, Keller C, Ehlers S, Bottger EC, Sander P . LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology, 2008,154(Pt 10):2991-3001. | [32] | Pathak R, Rathor N, Garima K, Sharma NK, Singh P, Varma-Basil M , Bose M. lspA gene of Mycobacterium tuberculosis co-transcribes with Rv1540 and induced by surface and acidic stress. Gene, 2015,560(1):57-62. | [33] | Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun SC, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV . The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog, 2009,5(7):e1000534. | [34] | Maloney E, Lun SC, Stankowska D, Guo HD, Rajagoapalan M, Bishai WR, Madiraju MV . Alterations in phospholipid catabolism in Mycobacterium tuberculosis LysX mutant. Front Microbiol, 2011,2:19. | [35] | Montoya-Rosales A, Provvedi R, Torres-Juarez F, Enciso-Moreno JA, Hernandez-Pando R, Manganelli R, Rivas-Santiago B . LysX gene is differentially expressed among Mycobacterium tuberculosis strains with different levels of virulence. Tuberculosis (Edinb), 2017,106:106-117. | [36] | Botella H, Vaubourgeix J, Lee MH, Song NM, Xu WZ, Makinoshima H, Glickman MS, Ehrt S . Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J, 2017,36(4):536-548. | [37] | Darby CM, Venugopal A, Ehrt S, Nathan CF . Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice. Tuberculosis (Edinb), 2011,91(5):343-347. | [38] | Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P . Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J, 2002,367(Pt 1):279-285. | [39] | Tian C, Xie JP . Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis. Microb Pathog, 2010,49(6):311-314. | [40] | Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y, Raghunand TR . The PE_PGRS proteins of Mycobacterium tuberculosis are Ca 2+ binding mediators of host-pathogen interaction. Biochemistry , 2016,55(33):4675-4687. | [41] | Chaitra MG, Shaila MS, Nayak R . Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE_PGRS 33 protein of Mycobacterium tuberculosis. J Med Microbiol, 2007,56(Pt 4):466-474. | [42] | Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN . PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol, 2010,184(7):3495-3504. | [43] | Zhang H, Wang J, Lei J, Zhang M, Yang Y, Chen Y, Wang H . PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients. Clin Microbiol Infect, 2007,13(2):139-145. | [44] | Ekiert DC, Cox JS . Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci USA, 2014,111(41):14758-14763. | [45] | Espitia C, Laclette JP, Mondragón-Palomino M, Amador A, Campuzano J, Martens A, Singh M, Cicero R, Zhang Y, Moreno C . The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins? Microbiology, 1999,145(Pt 12):3487-3495. | [46] | Mohareer K, Tundup S, Hasnain SE . Transcriptional regulation of Mycobacterium tuberculosis PE/PPE genes: a molecular switch to virulence? J Mol Microbiol Biotechnol, 2011,21(3-4):97-109. | [47] | Campuzano J, Aguilar D, Arriaga K, León JC, Salas-Rangel LP , González-y-Merchand J, Hernández- Pando R, Espitia C. The PGRS domain of Mycobacterium tuberculosis: PE_PGRS Rv1759c antigen is an efficient subunit vaccine to prevent reactivation in a murine model of chronic tuberculosis. Vaccine, 2007,25(18):3722-3729. | [48] | Mitra A, Speer A, Lin K, Ehrt S, Niederweis M . PPE surface proteins are required for heme utilization by Mycobacterium tuberculosis. mBio, 2017,8(1):e01720-16. | [49] | Raynaud C, Papavinasasundaram KG, Speight RA, Springer B, Sander P, Bottger EC, Colston MJ, Draper P . The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol Microbiol, 2002,46(1):191-201. | [50] | Yang YS, Auguin D, Delbecq S, Dumas E, Molle G, Molle V, Roumestand C, Saint N . Structure of the Mycobacterium tuberculosis OmpATb protein: a model of an oligomeric channel in the mycobacterial cell wall. Proteins, 2011,79(2):645-661. | [51] | Molle V, Saint N, Campagna S, Kremer L, Lea E, Draper P, Molle G. pH-dependent pore-forming activity of OmpATb from Mycobacterium tuberculosis and characterization of the channel by peptidic dissection. Mol Microbiol, 2006,61(3):826-837. | [52] | Song HH, Huff J, Janik K, Walter K, Keller C, Ehlers S, Bossmann SH, Niederweis M . Expression of the ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium tuberculosis to acidic environments. Mol Microbiol, 2011,80(4):900-918. | [53] | Schiller I, Vordermeier HM, Waters WR, Palmer M, Thacker T, Whelan A, Hardegger R, Marg-Haufe B, Raeber A, Oesch B . Assessment of Mycobacterium tuberculosis OmpATb as a novel antigen for the diagnosis of bovine tuberculosis. Clin Vaccine Immunol, 2009,16(9):1314-1321. | [54] | Abramovitch RB, Rohde KH, Hsu FF, Russell DG . AprABC: a Mycobacterium tuberculosis complex- specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol, 2011,80(3):678-694. | [55] | Broset E, Martín C, Gonzalo-Asensio J . Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio, 2015,6(5):e01289-15. | [56] | Cao GX, Howard ST, Zhang PP, Wang XS, Chen XL, Samten B, Pang XH . EspR, a regulator of the ESX-1 secretion system in Mycobacterium tuberculosis, is directly regulated by the two-component systems MprAB and PhoPR. Microbiology, 2015,161(Pt 3):477-489. | [57] | Baker JJ, Johnson BK, Abramovitch RB . Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol Microbiol, 2014,94(1):56-69. | [58] | Gannoun-Zaki L, Alibaud L, Kremer L . Point mutations within the fatty acid synthase type II dehydratase components HadA or HadC contribute to isoxyl resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2013,57(1):629-632. | [59] | Mehta M, Rajmani RS, Singh A . Mycobacterium tuberculosis WhiB3 responds to vacuolar pH-induced changes in mycothiol redox potential to modulate phagosomal maturation and virulence. J Biol Chem, 2016,291(6):2888-2903. | [60] | Alam MS, Agrawal P . Matrix-assisted refolding and redox properties of WhiB3/Rv3416 of Mycobacterium tuberculosis H37Rv. Protein Expr Purif, 2008,61(1):83-91. | [61] | Steyn AJC, Collins DM, Hondalus MK, Jacobs WR, Jr, Kawakami RP, Bloom BR. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA, 2002,99(5):3147-3152. | [62] | Saini V, Farhana A, Steyn AJC . Mycobacterium tuberculosis WhiB3: a novel iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxid Redox Signal, 2012,16(7):687-697. | [63] | Banaiee N, Jacobs WR, Jr, Ernst JD . Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages. Infect Immun, 2006,74(11):6449-6457. | [64] | Tsai MF, McCarthy P, Miller C. Substrate selectivity in glutamate-dependent acid resistance in enteric bacteria. Proc Natl Acad Sci USA, 2013,110(15):5898-5902. | [65] | Hong WZ, Wu YE, Fu XM, Chang ZY . Chaperone- dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol, 2012,20(7):328-335. | [66] | Wu JT, Li YN, Cai ZM, Jin Y . Pyruvate-associated acid resistance in bacteria. Appl Environ Microbiol, 2014,80(14):4108-4113. | [67] | Ferrara F, Di Niro R, D'Angelo S, Busetti M, Marzari R, Not T, Sblattero D. Development of an enzyme-linked immunosorbent assay for Bartonella henselae infection detection. Lett Appl Microbiol, 2014,59(3):253-262. | [68] | Bernit E, Veit V, La Scola B, Tissot-Dupont H, Gachon J, Raoult D, Harlé JR . Bartonella quintana and Mycobacterium tuberculosis coinfection in an HIV- infected patient with lymphadenitis. J Infect, 2003,46(4):244-246. | [69] | Kirksey MA, Tischler AD, Siméone R, Hisert KB, Uplekar S, Guilhot C, McKinney JD. Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity. Infect Immun, 2011,79(7):2829-2838. | [70] | Knapp GS, Lyubetskaya A, Peterson MW, Gomes ALC, Ma Z, Galagan JE, McDonough KA. Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c- Rv0247c in TB complex mycobacteria. Nucleic Acids Res, 2015,43(11):5377-5393. | [71] | Parish T . Two-component regulatory systems of mycobacteria. Microbiol Spectr, 2014, 2(1): MGM2- 0010-2013. | [72] | Pang XH, Cao GX, Neuenschwander PF, Haydel SE, Hou GH, Howard ST . The β-propeller gene Rv1057 of Mycobacterium tuberculosis has a complex promoter directly regulated by both the MprAB and TrcRS two-component systems. Tuberculosis (Edinb), 2011,91(Suppl. 1):S142-S149. | [73] | Haydel SE, Clark-Curtiss JE . The Mycobacterium tuberculosis TrcR response regulator represses transcription of the intracellularly expressed Rv1057 gene, encoding a seven-bladed β-propeller. J Bacteriol, 2006,188(1):150-159. | [74] | Haydel SE, Benjamin WH, Jr, Dunlap NE, Clark-Curtiss JE. Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J Bacteriol, 2002,184(8):2192-2203. | [75] | Mechaly AE, Haouz A, Miras I, Barilone N, Weber P, Shepard W, Alzari PM, Bellinzoni M . Conformational changes upon ligand binding in the essential class II fumarase Rv1098c from Mycobacterium tuberculosis. FEBS Lett, 2012,586:1606-1611. | [76] | Ruecker N, Jansen R, Trujillo C, Puckett S, Jayachandran P, Piroli GG, Frizzell N, Molina H, Rhee KY, Ehrt S . Fumarase deficiency causes protein and metabolite succination and intoxicates Mycobacterium tuberculosis. Cell Chem Biol, 2017,24(3):306-315. | [77] | Chan DSH, Kavanagh ME, McLean KJ, Munro AW, Matak-Vinković D, Coyne AG, Abell C. Effect of DMSO on protein structure and interactions assessed by collision-induced dissociation and unfolding. Anal Chem, 2017,89(18):9976-9983. | [78] | Viswanathan G, Yadav S, Raghunand TR . Identification of novel loci associated with mycobacterial isoniazid resistance. Tuberculosis (Edinb), 2016,96:21-26. | [79] | Safont M, Angelakis E, Richet H, Lepidi H, Fournier PE, Drancourt M, Raoult D . Bacterial lymphadenitis at a major referral hospital in France from 2008 to 2012. J Clin Microbiol, 2014,52(4):1161-1167. | [80] | Gurumurthy M, Rao M, Mukherjee T, Rao SPS, Boshoff HI, Dick T, Barry III CE, Manjunatha UH. A novel F420-dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol, 2013,87(4):744-755. | [81] | Belon C, Olvera MR, Vives E, Kremer L, Gannoun-Zaki L, Blanc-Potard AB . Use of the Salmonella MgtR peptide as an antagonist of the Mycobacterium MgtC virulence factor. Future Microbiol, 2016,11(2):215-225. | [82] | Belon C, Soscia C, Bernut A, Laubier A, Bleves S, Blanc-Potard AB . A macrophage subversion factor is shared by intracellular and extracellular pathogens. PLoS Pathog, 2015,11(6):e1004969. | [83] | Belon C, Gannoun-Zaki L, Lutfalla G, Kremer L, Blanc-Potard AB . Mycobacterium marinum MgtC plays a role in phagocytosis but is dispensable for intracellular multiplication. PLoS One, 2014,9(12):e116052. | [84] | Cabal A, Strunk M, Domínguez J, Lezcano MA, Vitoria MA, Ferrero M, Martín C, Iglesias MJ, Samper S . Single nucleotide polymorphism (SNP) analysis used for the phylogeny of the Mycobacterium tuberculosis complex based on a pyrosequencing assay. BMC Microbiol, 2014,14:21. | [85] | Jean-Francois FL, Dai J, Yu L, Myrick A, Rubin E, Fajer PG, Song LK, Zhou HX, Cross TA . Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study. J Mol Biol, 2014,426(2):436-446. | [86] | Lee EJ, Pontes MH, Groisman EA . A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell, 2013,154(1):146-156. | [87] | Yang YS, Labesse G, Carrère-Kremer S, Esteves K, Kremer L, Cohen-Gonsaud M, Blanc-Potard AB . The C-terminal domain of the virulence factor MgtC is a divergent ACT domain. J Bacteriol, 2012,194(22):6255-6263. | [88] | Abadia E, Zhang J, Dos Vultos T, Ritacco V, Kremer K, Aktas E, Matsumoto T, Refregier G, Van Soolingen D, Gicquel B, Sola C . Resolving lineage assignation on Mycobacterium tuberculosis clinical isolates classified by spoligotyping with a new high-throughput 3R SNPs based method. Infect Genet Evol, 2010,10(7):1066-1074. | [89] | Chuang PC, Liu HS, Sola C, Chen YMA, Jou RW . Spoligotypes of Mycobacterium tuberculosis isolates of a high tuberculosis burden aboriginal township in Taiwan. Infect Genet Evol, 2008,8(5):553-557. | [90] | Alix E, Godreuil S, Blanc-Potard AB . Identification of a Haarlem genotype-specific single nucleotide polymorphism in the mgtC virulence gene of Mycobacterium tuberculosis. J Clin Microbiol, 2006,44(6):2093-2098. | [91] | Lavigne JP, O’Callaghan D, Blanc-Potard AB . Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg 2+ environment. Infect Immun , 2005,73(5):3160-3163. | [92] | Blanc-Potard AB, Lafay B . MgtC as a horizontally- acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics. J Mol Evol, 2003,57(4):479-486. | [93] | Buchmeier N, Blanc-Potard A, Ehrt S, Piddington D, Riley L, Groisman EA . A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol Microbiol, 2000,35(6):1375-1382. | [94] | Korkegian A, O'Malley T, Xia Y, Zhou Y, Carter DS, Sunde B, Flint L, Thompson D, Ioerger TR, Sacchettini J, Alley MRK, Parish T. The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:96-98. | [95] | Murugesan D, Ray PC, Bayliss T, Prosser GA, Harrison JR, Green K, Soares De Melo C, Feng TS, Street LJ, Chibale K, Warner DF, Mizrahi V, Epemolu O, Scullion P, Ellis L, Riley J, Shishikura Y, Ferguson L, Osuna- Cabello M, Read KD, Green SR, Lamprecht DA, Finin PM, Steyn AJC, Ioerger TR, Sacchettini J, Rhee KY, Arora K, Barry III CE, Wyatt PG,Boshoff HIM. 2-Mercapto-quinazolinones as inhibitors of type II NADH dehydrogenase and Mycobacterium tuberculosis: structure-activity relationships, mechanism of action and absorption, distribution, metabolism, and excretion characterization. ACS Infect Dis, 2018, doi: 10.1021/ acsinfecdis.7b00275. | [96] | Harbut MB, Yang BY, Liu RH, Yano T, Vilcheze C, Cheng B, Lockner J, Guo H, Yu CG, Franzblau SG, Petrassi HM, Jacobs WR, Jr, Rubin H, Chatterjee AK, Wang F. Small molecules targeting Mycobacterium tuberculosis type II NADH dehydrogenase exhibit antimycobacterial activity. Angew Chem Int Engl E, 2018,57(13):3478-3482. | [97] | Vilchèze C, Weinrick B, Leung LW, Jacobs WR , Jr. Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence. Proc Natl Acad Sci USA, 2018,115(7):1599-1604. | [98] | Bainomugisa A, Lavu E, Hiashiri S, Majumdar S, Honjepari A, Moke R, Dakulala P, Hill-Cawthorne GA, Pandey S, Marais BJ, Coulter C, Coin L . Multi-clonal evolution of multi-drug-resistant/extensively drug- resistant Mycobacterium tuberculosis in a high- prevalence setting of Papua New Guinea for over three decades. Microb Genom, 2018, doi: 10.1099/mgen. 0.000147. | [99] | Nguyen N, Wilson DW, Nagalingam G, Triccas JA, Schneider EK, Li J, Velkov T, Baell J . Broad activity of diphenyleneiodonium analogues against Mycobacterium tuberculosis, malaria parasites and bacterial pathogens. Eur J Med Chem, 2018,148:507-518. | [100] | Tan YJ, Su BY, Zheng HW, Song YY, Wang YF, Pang Y . Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in Southern China. Front Microbiol, 2017,8:2358. | [101] | Enany S, Yoshida Y, Tateishi Y, Ozeki Y, Nishiyama A, Savitskaya A, Yamaguchi T, Ohara Y, Yamamoto T, Ato M, Matsumoto S . Mycobacterial DNA-binding protein 1 is critical for long term survival of Mycobacterium smegmatis and simultaneously coordinates cellular functions. Sci Rep, 2017,7:6810. | [102] | Sellamuthu S, Singh M, Kumar A, Singh SK . Type-II NADH Dehydrogenase(NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Expert Opin Ther Targets, 2017,21(6):559-570. | [103] | Hong WD, Gibbons PD, Leung SC, Amewu R, Stocks PA, Stachulski A, Horta P, Cristiano MLS, Shone AE, Moss D, Ardrey A, Sharma R, Warman AJ, Bedingfield PTP, Fisher NE, Aljayyoussi G, Mead S, Caws M, Berry NG, Ward SA, Biagini GA, O'Neill PM, Nixon GL. Rational design, synthesis, and biological evaluation of heterocyclic quinolones targeting the respiratory chain of Mycobacterium tuberculosis. J Med Chem, 2017,60(9):3703-3726. | [104] | Unissa AN, Subbian S, Hanna LE, Selvakumar N . Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol, 2016,45:474-492. | [105] | Otchere ID, Asante-Poku A, Osei-Wusu S, Baddoo A, Sarpong E, Ganiyu AH, Aboagye SY, Forson A, Bonsu F, Yahayah AI, Koram K, Gagneux S, Yeboah-Manu D . Detection and characterization of drug-resistant conferring genes in Mycobacterium tuberculosis complex strains: a prospective study in two distant regions of Ghana. Tuberculosis (Edinb), 2016,99:147-154. | [106] | Heikal A, Hards K, Cheung CY, Menorca A, Timmer MSM, Stocker BL, Cook GM . Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. J Antimicrob Chemother, 2016,71(10):2840-2847. | [107] | Rueda J, Realpe T, Mejia GI, Zapata E, Rozo JC, Ferro BE, Robledo J . Genotypic analysis of genes associated with independent resistance and cross-resistance to isoniazid and ethionamide in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother, 2015,59(12):7805-7810. | [108] | Boonaiam S, Chaiprasert A, Prammananan T, Leechawengwongs M . Genotypic analysis of genes associated with isoniazid and ethionamide resistance in MDR-TB isolates from Thailand. Clin Microbiol Infect, 2010,16(4):396-399. | [109] | Miller JL, Velmurugan K, Cowan MJ, Briken V . The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog, 2010,6(4):e1000864. | [110] | Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W . Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug- resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2011,55(1):355-360. | [111] | Shirude PS, Paul B, Choudhury NR, Kedari C, Bandodkar B, Ugarkar BG . Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents. ACS Med Chem Lett, 2012,3(9):736-740. | [112] | Machado D, Perdigão J, Ramos J, Couto I, Portugal I, Ritter C, Boettger EC, Viveiros M . High-level resistance to isoniazid and ethionamide in multidrug- resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J Antimicrob Chemother, 2013,68(8):1728-1732. | [113] | Warman AJ, Rito TS, Fisher NE, Moss DM, Berry NG, O'Neill PM, Ward SA, Biagini GA. Antitubercular pharmacodynamics of phenothiazines. J Antimicrob Chemother, 2013,68(4):869-880. | [114] | Awasthy D, Ambady A, Narayana A, Morayya S, Sharma U . Roles of the two type II NADH dehydrogenases in the survival of Mycobacterium tuberculosis in vitro.Gene, 2014,550(1):110-116. | [115] | Dunn EA, Roxburgh M, Larsen L, Smith RAJ McLellan AD, Heikal A, Murphy MP, Cook GM. , Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Bioorg Med Chem, 2014,22(19):5320-5328. | [116] | Jagielski T, Bakula Z, Roeske K, Kamiński M, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J . Detection of mutations associated with isoniazid resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother, 2014,69(9):2369-2375. | [117] | Schurig-Briccio LA, Yano T, Rubin H, Gennis RB . Characterization of the type II NADH: menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. Biochim Biophys Acta-Bioenerget, 2014,1837(7):954-963. | [118] | Shekar S, Yeo ZX, Wong JCL, Chan MKL, Ong DCT, Tongyoo P, Wong SY, Lee AS . Detecting novel genetic variants associated with isoniazid-resistant Mycobacterium tuberculosis. PLoS One, 2014,9(7):e102383. | [119] | Verma SC, Venugopal U, Khan SR, Akhtar MS, Krishnan MY . Coupling reporter expression to respiration detects active as well as dormant mycobacteria in vitro and in mouse tissues. Int J Mycobacteriol, 2014,3(1):25-35. | [120] | Yano T, Rahimian M, Aneja KK, Schechter NM, Rubin H, Scott CP . Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites. Biochemistry, 2014,53(7):1179-1190. | [121] | Jagielski T, Bakuła Z, Roeske K, Kamiński M, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J . Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemother, 2015,70(12):3214-3221. | [122] | Zimenkov DV, Nosova EY, Kulagina EV, Antonova OV, Arslanbaeva LR, Isakova AI, Krylova LY, Peretokina IV, Makarova M, Safonova SG, Borisov SE, Gryadunov DA . Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 2017,72(7):1901-1906. | [123] | Xu J, Wang B, Hu MH, Huo FM, Guo SC, Jing W, Nuermberger E, Lu Y . Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2017,61(6):e00239-17. | [124] | Zhang S, Chen JZ, Cui P, Shi WL, Zhang WH, Zhang Y . Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015,70(9):2507-2510. | [125] | Kozak R, Behr MA . Divergence of immunologic and protective responses of different BCG strains in a murine model. Vaccine, 2011,29(7):1519-1526. | [126] | Kozak RA, Alexander DC, Liao RL, Sherman DR, Behr MA . Region of difference 2 contributes to virulence of Mycobacterium tuberculosis. Infect Immun, 2011,79(1):59-66. | [127] | Cockle PJ, Gordon SV, Lalvani A, Buddle BM, Hewinson RG, Vordermeier HM . Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun, 2002,70(12):6996-7003. | [128] | Van Dam JCJ, Schaap PJ , Martins dos Santos VAP, Suárez-Diez M. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. BMC Syst Biol, 2014,8:111. | [129] | Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KE, Harvey E, Buxton RS, Davis EO, Young DB . Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol, 2013,90(1):195-207. | [130] | Serafini A, Boldrin F, Palù G, Manganelli R . Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol, 2009,191(20):6340-6344. | [131] | Maciąg A, Piazza A, Riccardi G, Milano A . Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis. BMC Microbiol, 2009,9:48. | [132] | Lucarelli D, Russo S, Garman E, Milano A, Meyer- Klaucke W, Pohl E . Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem, 2007,282(13):9914-9922. | [133] | Maciąg A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palù G, Riccardi G, Manganelli R . Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol, 2007,189(3):730-740. | [134] | Pisu D, Provvedi R, Espinosa DM, Payan JB, Boldrin F, Palù G, Hernandez-Pando R, Manganelli R . The Alternative sigma factors SigE and SigB are involved in tolerance and persistence to antitubercular drugs. Antimicrob Agents Chemother, 2017,61(12):e01596-17. | [135] | Yang SS, Hu YB, Wang XD, Gao YR, Li K, Zhang XE, Chen SY, Zhang TY, Gu J, Deng JY . Deletion of sigB causes increased sensitivity to para-aminosalicylic acid and sulfamethoxazole in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2017,61(10):e00551-17. | [136] | Pettersson BM, Das S, Behra PR, Jordan HR, Ramesh M, Mallick A, Root KM, Cheramie MN, de la Cruz Melara I, Small PL, Dasgupta S, Ennis DG, Kirsebom LA. Comparative sigma factor-mRNA levels in mycobacterium marinum under stress conditions and during host infection. PLoS One, 2015,10(10):e0139823. | [137] | Sharma AK, Chatterjee A, Gupta S, Banerjee R, Mandal S, Mukhopadhyay J, Basu J, Kundu M . MtrA, an essential response regulator of the MtrAB two- component system, regulates the transcription of resuscitation-promoting factor B of Mycobacterium tuberculosis. Microbiology, 2015,161(6):1271-1281. | [138] | Hu YB, Morichaud Z, Perumal AS, Roquet-Baneres F, Brodolin K . Mycobacterium RbpA cooperates with the stress-response σ B subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res , 2014,42(16):10399-10408. | [139] | Datta P, Shi LB, Bibi N, Balázsi G, Gennaro ML . Regulation of central metabolism genes of Mycobacterium tuberculosis by parallel feed-forward loops controlled by sigma factor E(σE). J Bacteriol , 2011,193(5):1154-1160. | [140] | Dutta NK, Mazumdar K, Dastidar SG, Karakousis PC, Amaral L . New patentable use of an old neuroleptic compound thioridazine to combat tuberculosis: a gene regulation perspective. Recent Pat Anti-Infect Drug Discov, 2011,6(2):128-138. | [141] | MacArthur I, Parreira VR, Lepp D, Mutharia LM, Vazquez-Boland JA, Prescott JF . The sensor kinase MprB is required for Rhodococcus equi virulence. Vet Microbiol, 2011,147(1-2):133-141. | [142] | Giovannini D, Cappelli G, Jiang LN, Castilletti C, Colone A, Serafino A, Wannenes F, Giaòo L, Quintiliani G, Fraziano M, Nepravishta R, Colizzi V, Mariani F . A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM Operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria? Microb Pathog, 2012,53(3-4):135-146. | [143] | Mustyala KK, Malkhed V, Potlapally SR, Chittireddy VR, Vuruputuri U . Macromolecular structure and interaction studies of SigF and Usfx in italic>Mycobacterium tuberculosis. J Recept Signal Transduct Res, 2014,34(3):162-173. | [144] | Olivencia BF, Müller AU, Roschitzki B, Burger S, Weber-Ban E, Imkamp F . Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response. Sci Rep, 2017,7:13987. | [145] | Yan SQ, Xu MM, Wang R, Li QM, Yu ZX, Xie P . Overexpression of Rv2788 increases mycobacterium stresses survival. Microbiol Res, 2017,195:51-59. | [146] | Nautiyal A, Patil KN, Muniyappa K . Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J Antimicrob Chemother, 2014,69(7):1834-1843. | [147] | Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO . Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem, 2012,287(26):22004-22014. | [148] | Forse LN, Houghton J, Davis EO . Enhanced expression of recX in Mycobacterium tuberculosis owing to a promoter internal to recA. Tuberculosis (Edinb), 2011,91(2):127-135. | [149] | Chandran AV, Prabu JR, Manjunath GP, Patil KN, Muniyappa K, Vijayan M . Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA. Acta Cryst, 2010,66(Pt 9):1093-1095. | [150] | Dawson LF, Dillury J, Davis EO . RecA-independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box. J Bacteriol, 2010,192(2):599-603. | [151] | Janowski R, Panjikar S, Eddine AN, Kaufmann SHE, Weiss MS . Structural analysis reveals DNA binding properties of Rv2827c, a hypothetical protein from Mycobacterium tuberculosis. J Struct Funct Genomics, 2009,10(2):137-150. | [152] | Janowski R, Eddine AN, Kaufmann SH, Weiss MS . Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv2827c from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2006,62(Pt 8):753-756. | [153] | Singh RK, Kefala G, Janowski R, Mueller-Dieckmann C, Von Kries JP, Weiss MS . The high-resolution Structure of LeuB (Rv2995c) from Mycobacterium tuberculosis. J Mol Biol, 2005,346(1):1-11. | [154] | Han MY, Son MY, Lee SH, Kim JK, Huh JS, Kim JH, Choe IS, Chung TW, Choe YK . Molecular cloning of the leuB genes from Mycobacterium bovis BCG and Mycobacterium tuberculosis. Biochem Mol Biol Int, 1997,41(4):657-663. |
|