遗传 ›› 2016, Vol. 38 ›› Issue (10): 859-871.doi: 10.16288/j.yczz.16-213
崔鹏1, 许涛1, 张文宏1, 张颖1, 2
收稿日期:
2016-06-15
修回日期:
2016-07-11
出版日期:
2016-10-20
发布日期:
2016-10-20
作者简介:
张颖,博士,教授,研究方向:细菌耐药。
基金资助:
Peng Cui1, Tao Xu1, Wenhong Zhang1, Ying Zhang1, 2
Received:
2016-06-15
Revised:
2016-07-11
Online:
2016-10-20
Published:
2016-10-20
Supported by:
摘要: 持留菌是细菌群体中一小部分具有表型耐药的细菌。自1944年被发现后,近几十年来因其在慢性持续性感染和生物膜感染中的重要作用而得到越来越多的重视。已有的研究结果表明,细菌持留的机理复杂,涉及的相关信号通路有毒素-抗毒素系统、细胞能量代谢及蛋白核酸合成等生理状态的降低、DNA保护修复系统、蛋白酶系统、反式翻译、外排泵系统等。虽然不同细菌的持留机理有一定的相似性和保守性,但不同细菌的持留机制也存在差异,如毒素-抗毒素系统在大肠埃希菌(Escherichia coli)中的过度激活可导致持留菌增加,但在金黄色葡萄球菌(Staphylococcus aureus)中却并无相同作用。本文从持留菌的研究历史出发,综述了当前对革兰氏阴性菌和阳性菌的持留机制方面的研究进展,同时探讨了在持留菌相关感染疾病方面的治疗策略,以期为更好地解决持留菌带来的问题,缩短治疗时间提供新的思路。
崔鹏, 许涛, 张文宏, 张颖. 细菌持留与抗生素表型耐药机制[J]. 遗传, 2016, 38(10): 859-871.
Peng Cui, Tao Xu, Wenhong Zhang, Ying Zhang. Molecular mechanisms of bacterial persistence and phenotypic antibiotic resistance[J]. Hereditas(Beijing), 2016, 38(10): 859-871.
[1] Balaban NQ. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev , 2011, 21(6): 768-775. [2] Zhang Y. Persisters, persistent infections and the Yin-Yang model. Emerg Microbes Infect , 2014, 3(1): e3. [3] Connolly LE, Edelstein PH, Ramakrishnan L. Why is long-term therapy required to cure tuberculosis? PLoS Med , 2007, 4(3): 435-442. [4] Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946-1986, with relevant subsequent publications. Int J Tuberc Lung Dis , 1999, 3(10 Suppl. 2): S231-S279. [5] Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Chemother , 2012, 56(5): 2223-2230. [6] Blango MG, Mulvey MA. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother , 2010, 54(5): 1855-1863. [7] Hobby GL, Meyer K, Chaffee E. Observations on the mechanism of action of penicillin. Proc Soc Exp Biol Med , 1942, 50(2): 281-285. [8] Bigger J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet , 1944, 244(6320): 497-500. [9] Li YF, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli . Antimicrob Agents Chemother , 2007, 51(6): 2092-2099. [10] Ma C, Sim S, Shi WL, Du LJ, Xing DM, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli . FEMS Microbiol Lett , 2010, 303(1): 33-40. [11] Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol , 2011, 14(5): 593-598. [12] Feng J, Shi WL, Zhang S, Zhang Y. Persister mechanisms in Borrelia burgdorferi : implications for improved intervention. Emerg Microbes Infect , 2015, 4(8): e51. [13] Moyed HS, Bertrand KP. HipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol , 1983, 155(2): 768-775. [14] Scherrer R, Moyed HS. Conditional impairment of cell division and altered lethality in hipA mutants of Escherichia coli K-12. J Bacteriol , 1988, 170(8): 3321-3326. [15] Black DS, Kelly AJ, Mardis MJ, Moyed HS. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol , 1991, 173(18): 5732-5739. [16] Black DS, Irwin B, Moyed HS. Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol , 1994, 176(13): 4081-4091. [17] Korch SB, Henderson TA, Hill TM. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p) ppGpp synthesis. Mol Microbiol , 2003, 50(4): 1199-1213. [18] Correia FF, D'Onofrio A, Rejtar T, Li LY, Karger BL, Makarova K, Koonin EV, Lewis K. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli . J Bacteriol , 2006, 188(24): 8360-8367. [19] Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell , 2013, 52(2): 248-254. [20] Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun , 2013, 4: 3001. [21] Sekine SI, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, Vassylyev DG, Yokoyama S. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J , 2003, 22(3): 676-688. [22] Shao YC, Harrison EM, Bi DX, Tai C, He XY, Ou HY, Rajakumar K, Deng ZX. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucl Acids Res , 2011, 39(Suppl. 1): D606-D611. [23] Tashiro Y, Kawata K, Taniuchi A, Kakinuma K, May T, Okabe S. RelE-mediated dormancy is enhanced at high cell density in Escherichia coli . J Bacteriol , 2012, 194(5): 1169-1176. [24] Unoson C, Wagner EGH. A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli . Mol Microbiol , 2008, 70(1): 258-270. [25] Kim Y, Wood TK. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli . Biochem Biophys Res Commun , 2010, 391(1): 209-213. [26] Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother , 2009, 53(6): 2253-2258. [27] Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA , 2011, 108(32): 13206-13211. [28] Schuster CF, Bertram R. Toxin-antitoxin systems of Staphylococcus aureus . Toxins , 2016, 8(5): 140. [29] Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol , 2016: 16051. [30] Spoering AL, Vulić M, Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli . J Bacteriol , 2006, 188(14): 5136-5144. [31] Lin ECC. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol , 1976, 30: 535-578. [32] Amato SM, Orman MA, Brynildsen MP. Metabolic control of persister formation in Escherichia coli . Mol Cell , 2013, 50(4): 475-487. [33] Amato SM, Brynildsen MP. Persister heterogeneity arising from a single metabolic stress. Curr Biol , 2015, 25(16): 2090-2098. [34] Orman MA, Brynildsen MP. Inhibition of stationary phase respiration impairs persister formation in E. coli . Nat Commun , 2015, 6: 7983. [35] Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA , 2015, 112(27): 8173-8180. [36] Wang WJ, Chen JZ, Chen G, Du X, Cui P, Wu J, Zhao J, Wu N, Zhang WH, Li M, Zhang Y. Transposon mutagenesis identifies novel genes associated with Staphylococcus aureus persister formation. Front Microbiol , 2015, 6: 1437. [37] Han J, He LL, Shi WL, Xu XG, Wang S, Zhang S, Zhang Y. Glycerol uptake is important for L-Form formation and persistence in Staphylococcus aureus . PLoS One , 2014, 9(9): e108325. [38] Yee R, Cui P, Shi WL, Feng J, Zhang Y. Genetic screen reveals the role of purine metabolism in Staphylococcus aureus persistence to rifampicin. Antibiotics , 2015, 4(4): 627-642. [39] Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature , 2011, 473(7346): 216-220. [40] Prax M, Mechler L, Weidenmaier C, Bertram R. Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS One , 2016, 11(3): e0150907. [41] Von Eiff C. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. Int J Antimicrob Agents , 2008, 31(6): 507-510. [42] Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F. Antibiotic activity against small-colony variants of Staphylococcus aureus : review of in vitro , animal and clinical data. J Antimicrob Chemother , 2013, 68(7): 1455-1464. [43] Proctor RA, Kriegeskorte A, Kahl B, Becker K, Löffler B, Peters G. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol , 2014, 4: 99. [44] Lechner S, Patra P, Klumpp S, Bertram R. Interplay between population dynamics and drug tolerance of Staphylococcus aureus persister cells. J Mol Microbiol Biotechnol , 2012, 22(6): 381-391. [45] Leimer N, Rachmühl C, Marques MP, Bahlmann AS, Furrer A, Eichenseher F, Seidl K, Matt U, Loessner MJ, Schuepbach RA, Zinkernagel AS. Nonstable Staphylococcus aureus small-colony variants are induced by low pH and sensitized to antimicrobial therapy by phagolysosomal alkalinization. J Infect Dis , 2016, 213(2): 305-313. [46] Völzing KG, Brynildsen MP. Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery. mBio , 2015, 6(5). [47] Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol , 2010, 8(2): e1000317. [48] Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli . PLoS Genet , 2009, 5(12): e1000760. [49] Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, Ghigo J-M, Beloin C. Starvation, together with the SOS response, mediates high biofilm- specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet , 2013, 9(1): e1003144. [50] Shi WL, Zhang XL, Jiang X, Yuan HM, Lee JS, Barry III CE, Wang HH, Zhang WH, Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis . Science , 2011, 333(6049): 1630-1632. [51] Li JH, Ji L, Shi WL, Xie JP, Zhang Y. Trans-translation mediates tolerance to multiple antibiotics and stresses in Escherichia coli . J Antimicrob Chemother , 2013, 68(11): 2477-2481. [52] Chowdhury N, Kwan BW, Wood TK. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Sci Rep , 2016, 6: 20519. [53] Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature , 2013, 503(7476): 365-370. [54] Pu YY, Zhao ZL, Li YX, Zou J, Ma Q, Zhao YN, Ke YH, Zhu Y, Chen HY, Baker MAB, Ge H, Sun YJ, Xie XLS, Bai F. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell , 2016, 62(2): 284-294. [55] Mechler L, Herbig A, Paprotka K, Fraunholz M, Nieselt K, Bertram R. A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus . Antimicrob Agents Chemother , 2015, 59(9): 5366-5376. [56] Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell , 2011, 145(1): 39-53. [57] Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo . J Immunol , 2011, 186(11): 6585-6596. [58] Gristina AG, Hobgood CD, Webb LX, Myrvik QN. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials , 1987, 8(6): 423-426. [59] Vrany JD, Stewart PS, Suci PA. Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa bofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother , 1997, 41(6): 1352-1358. [60] Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother , 2000, 44(7): 1818-1824. [61] Shapiro JA, Nguyen VL, Chamberlain NR. Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J Med Microbiol , 2011, 60(Pt 7): 950-960. [62] Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays , 2014, 36(10): 991-996. [63] O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol , 1998, 30(2): 295-304. [64] Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA , 2005, 102(31): 11076-11081. [65] Walters III MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother , 2003, 47(1): 317-323. [66] Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature , 2003, 426(6964): 306-310. [67] Srivatsan A, Wang JD. Control of bacterial transcription, translation and replication by (p) ppGpp. Curr Opin Microbiol , 2008, 11(2): 100-105. [68] Maisonneuve E, Castro-Camargo M, Gerdes K. (p) ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell , 2013, 154(5): 1140-1150. [69] Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell , 2014, 157(3): 539-548. [70] Kint CI, Verstraeten N, Fauvart M, Michiels J. New-found fundamentals of bacterial persistence. Trends Microbiol , 2012, 20(12): 577-585. [71] Wu N, He L, Cui P, Wang W, Yuan Y, Liu S, Xu T, Zhang S, Wu J, Zhang W, Zhang Y. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol , 2015, 6: 1003. [72] Geiger T, Goerke C, Fritz M, Schäfer T, Ohlsen K, Liebeke M, Lalk M, Wolz C. Role of the (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus . Infect Immun , 2010, 78(5): 1873-1883. [73] Fauvart M, De Groote VN, Michiels J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol , 2011, 60(6): 699-709. [74] Möker N, Dean CR, Tao JS. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol , 2010, 192(7): 1946-1955. [75] Kim JS, Cho DH, Heo P, Jung SC, Park M, Oh EJ, Sung J, Kim PJ, Lee SC, Lee DH, Lee S, Lee CH, Shin D, Jin YS, Kweon DH. Fumarate-mediated persistence of Escherichia coli against antibiotics. Antimicrob Agents Chemother , 2016, 60(4): 2232-2240. [76] Purvis JE, Yomano LP, Ingram LO. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol , 2005, 71(7): 3761-3769. [77] Kuczyńska-Wiśnik D, Stojowska K, Matuszewska E, Leszczyńska D, Algara MM, Augustynowicz M, Laskowska E. Lack of intracellular trehalose affects formation of Escherichia coli persister cells. Microbiology , 2015, 161(Pt 4): 786-796. [78] Ayrapetyan M, Williams TC, Oliver JD. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol , 2015, 23(1): 7-13. [79] Allan EJ, Hoischen C, Gumpert J. Bacterial L-forms. Adv Appl Microbiol , 2009, 68: 1-39. [80] Domingue GJ. Demystifying pleomorphic forms in persistence and expression of disease: Are they bacteria, and is peptidoglycan the solution? Discov Med , 2010, 10(52): 234-246. [81] Glover WA, Yang YQ, Zhang Y. Insights into the molecular basis of L-form formation and survival in Escherichia coli . PLoS One , 2009, 4(10): e7316. [82] Han J, Shi WL, Xu XG, Wang S, Zhang S, He L, Sun XD, Zhang Y. Conditions and mutations affecting Staphylococcus aureus L-form formation. Microbiology , 2015, 161(1): 57-66. [83] Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol , 2010, 192(23): 6191-6199. [84] Corne P, Marchandin H, Macia JC, Jonquet O. Treatment failure of methicillin-resistant Staphylococcus aureus endocarditis with linezolid. Scand J Infect Dis , 2005, 37(11-12): 946-949. [85] Welsh KJ, Skrobarcek KA, Abbott AN, Lewis CT, Kruzel MC, Lewis EM, Gardiner JM, Mohr JF, Armitige LY, Wanger A. Predictors of relapse of methicillin-resistant Staphylococcus aureus bacteremia after treatment with vancomycin. J Clin Microbiol , 2011, 49(10): 3669-3672. [86] Shi WL, Chen JZ, Feng J, Cui P, Zhang S, Weng XH, Zhang WH, Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis . Emerg Microbes Infect , 2014, 3(8): e58. [87] Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida SI. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol , 2005, 49(9): 875-884. [88] Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Åberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol , 2009, 5(12): 913-919. [89] Junker LM, Clardy J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother , 2007, 51(10): 3582-3590. [90] Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med , 2013, 5(190): 190ra81. [91] Zhang Y, Shi WL, Zhang WH, Mitchison D. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr , 2013, 2(4): 1-12. [92] Feng J, Auwaerter PG, Zhang Y. Drug combinations against Borrelia burgdorferi persisters in vitro : eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS One , 2015, 10(3): e0117207. [93] Feng J, Weitner M, Shi WL, Zhang S, Zhang Y. Eradication of biofilm-like microcolony structures of Borrelia burgdorferi by daunomycin and daptomycin but not mitomycin C in combination with doxycycline and cefuroxime. Front Microbiol , 2016, 7: 62. (责任编委: 包其郁) |
[1] | 张凤霞,王国栋. 现代代谢组学平台建设及相关技术应用[J]. 遗传, 2019, 41(9): 883-892. |
[2] | 刘笑, 王琰. 胆汁酸的合成调控及其在生理与病理中的功能机制[J]. 遗传, 2019, 41(5): 365-374. |
[3] | 周萌,景军红,毛瑞涵,郭静,王志鹏. 代谢组学在家养动物遗传育种中的应用[J]. 遗传, 2019, 41(2): 111-124. |
[4] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[5] | 潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传, 2018, 40(10): 874-887. |
[6] | 黄万龙,张秀秀,李嫒,苗向阳. 利用RNA-seq技术筛选大白猪皮下和肌内脂肪 组织差异表达基因[J]. 遗传, 2017, 39(6): 501-511. |
[7] | 杨盛智, 吴国艳, 龙梅, 邓雯文, 王红宁, 邹立扣. 鸡蛋生产链中沙门氏菌对抗生素及消毒剂的耐药性研究[J]. 遗传, 2016, 38(10): 948-956. |
[8] | 曹继红, 廖尉廷, 沃琤, 徐国荣, 徐焕新, 李平龙, 陶冶, 王鹏, 林加日, 邓连瑞. 组蛋白去乙酰化酶抑制剂影响的代谢相关基因的组学筛查及验证[J]. 遗传, 2015, 37(9): 918-925. |
[9] | 杨延成,程航,周人杰,饶贤才. SCCmec遗传元件及其在耐甲氧西林金黄色葡萄球菌分子分型中的应用[J]. 遗传, 2015, 37(5): 442-451. |
[10] | 许瑞霞,高磊,赵伟利,张伟,宋广超,甘尚权,石国庆. FABP4基因在阿勒泰羊尾脂沉积与代谢模型中的表达变化规律[J]. 遗传, 2015, 37(2): 174-182. |
[11] | 曹丽娟,刘昕訸,查晴,宋倩,杨克,刘艳. SIRT3与细胞代谢及心血管疾病的相关性[J]. 遗传, 2015, 37(2): 111-120. |
[12] | 郑佳, 肖新华, 张茜, 于淼, 许建萍, 王志新, 刘一静, 李明敏. 母鼠营养不良导致子代在生命早期出现糖脂代谢紊乱及其机制探讨[J]. 遗传, 2015, 37(1): 70-76. |
[13] | 李美婷, 曹林林, 杨洋. 表观遗传修饰在糖脂代谢中的作用[J]. 遗传, 2014, 36(3): 200-207. |
[14] | 冉茂良,陈斌,尹杰,杨岸奇,李智,蒋明. 猪microRNA组学研究进展[J]. 遗传, 2014, 36(10): 974-984. |
[15] | 丁慧 岳丽杰 杨春兰. 次黄嘌呤鸟嘌呤磷酸核糖转移酶研究进展[J]. 遗传, 2013, 35(8): 948-954. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: