[1] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science , 2003, 300(5620): 764. [2] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science , 2009, 326(5959): 1509-1512. [3] 周金伟, 王灵慧, 申义君, 余树民, 曹随忠. 类转录激活因子效应物核酸酶(TALENs)的构建及其在基因组定点修饰中的应用. 中国细胞生物学学报, 2013, 35(11): 1672-1680. [4] Tesson L, Usal C, Ménoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng XD, Zhang L, Gregory PD, Anegon I, Cost GJ. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol , 2011, 29(8): 695-696. [5] 沈延, 黄鹏, 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程. 遗传, 2013, 35(4): 533-544. [6] Carlson DF, Tan WF, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA , 2012, 109(43): 17382-17387. [7] Whyte JJ, Zhao JG, Wells KD, Samuel MS, Whitworth KM, Walters EM, Laughlin MH, Prather RS. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev , 2011, 78(1): 2. [8] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821. [9] Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell , 2013, 153(4): 910-918. [10] Jao LE, Wente SR, Chen WB. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA , 2013, 110(34): 13904-13909. [11] Chang NN, Sun CH, Gao L, Zhu D, Xu XF, Zhu XJ, Xiong JW, Xi JJ. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res , 2013, 23(4): 465-472. [12] Auer TO, Duroure K, De Cian A, Concordet J-P, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res , 2014, 24(1): 142-153. [13] Hai T, Teng F, Guo RF, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res , 2014, 24(3): 372-375. [14] Zhou XQ, Xin JG, Fan NN, Zou QJ, Huang J, Ouyang Z, Zhao Y, Zhao BT, Liu ZM, Lai SS, Yi XL, Guo L, Esteban MA, Zeng YZ, Yang HQ, Lai LX. Generation of CRISPR/ Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci , 2015, 72(6): 1175-1184. [15] Ni W, Qiao J, Hu SW, Zhao XX, Regouski M, Yang M, Polejaeva IA, Chen CF. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One , 2014, 9(9): e106718. [16] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science , 2010, 327(5962): 167-170. [17] Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol , 2011, 14(3): 321-327. [18] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol , 1987, 169: 5429-5433. [19] Coffey A, Ross RP. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie van Leeuwenhoek , 2002, 82(1-4): 303-321. [20] Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology , 2005, 151(8): 2551-2561. [21] Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct , 2006, 1: 7. [22] Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ , 2014, 56(1): 46-52. [23] Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science , 2014, 346(6213): 1258096. [24] Hou ZG, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis . Proc Natl Acad Sci USA , 2013, 110(39): 15644-15649. [25] Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol , 2014, 32(4): 347-355. [26] Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell , 2013, 154(6): 1380-1389. [27] Wu XB, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen SD, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol , 2014, 32(7): 670-676. [28] Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh J-RJ, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol , 2013, 31(3): 227-229. [29] Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [30] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823. [31] Shen B, Zhang J, Wu HY, Wang JY, Ma K, Li Z, Zhang XG, Zhang PM, Huang XX. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res , 2013, 23(5): 720-723. [32] Li W, Teng F, Li TD, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol , 2013, 31(8): 684-686. [33] Li DL, Qiu ZW, Shao YJ, Chen YT, Guan YT, Liu MZ, Li YM, Gao N, Wang LR, Lu XL, Zhao YX, Liu MY. Heritable gene targeting in the mouse and rat using a CRISPR- Cas system. Nat Biotechnol , 2013, 31(8): 681-683. [34] Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM. Simple and efficient CRISPR/ Cas9-mediated targeted mutagenesis in Xenopus tropicalis . Genesis , 2013, 51(12): 835-843. [35] Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics , 2013, 194(4): 1029-1035. [36] Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/ Cas9 system. Cell Rep , 2013, 4(1): 220-228. [37] Wang YQ, Li ZQ, Xu J, Zeng BS, Ling L, You L, Chen YZ, Huang YP, Tan AJ. The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori . Cell Res , 2013, 23(12): 1414-1416. [38] Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR/Cas9 system. Nat Methods , 2013, 10(8): 741-743. [39] Waaijers S, Portegijs V, Kerver J, Lemmens BBLG, Tijsterman M, van den Heuvel S, Boxem M. CRISPR/ Cas9-targeted mutagenesis in Caenorhabditis elegans . Genetics , 2013, 195(3): 1187-1191. [40] Yang DS, Xu J, Zhu TQ, Fan JL, Lai LX, Zhang JF, Chen YE. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol , 2014, 6(1): 97-99. [41] Niu YY, Shen B, Cui YQ, Chen YC, Wang JY, Wang L, Kang Y, Zhao XY, Si W, Li W, Xiang AP, Zhou JK, Guo XJ, Bi Y, Si CY, Hu B, Dong GY, Wang H, Zhou ZM, Li TQ, Tan T, Pu XQ, Wang F, Ji SH, Zhou Q, Huang XX, Ji WZ, Sha JH. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell , 2014, 156(4): 836-843. [42] Yin LL, Maddison LA, Li MY, Kara N, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen WB. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics , 2015, doi:10.1534/genetics. 115.176917 [Epub ahead of print]. [43] Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell , 2013, 13(6): 659-662. [44] Li JH, Shou J, Guo Y, Tang YX, Wu YH, Jia ZL, Zhai YN, Chen ZF, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol , 2015, doi:10.1093/jmcb/mjv016 [Epub ahead of print]. [45] Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1, 3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation , 2014, 21(3): 291-300. [46] Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY, Wang H, Xing RX, Pu XQ, Yang S-H, Li SH, Ji WZ, Li XJ. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet , 2015, 24(13): 3764-3774. [47] Chen SD, Sanjana NE, Zheng KJ, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell , 2015, 160(6): 1246-1260. [48] Fu YF, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using trun-cated guide RNAs. Nat Biotechnol , 2014, 32(3): 279-284. [49] Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods , 2013, 10(10): 957-963. [50] Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol , 2011, 29(2): 149-153. [51] Polstein LR, Gersbach CA. A light-inducible crispr-cas9 system for control of endogenous gene activation. Nat Chem Biol , 2015, 11(3): 198-200. [52] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature , 2015, 517(7536): 583-588. [53] Ji WY, Lee D, Wong E, Dadlani P, Dinh D, Huang V, Kearns K, Teng S, Chen SS, Haliburton J, Heimberg G, Heineike B, Ramasubramanian A, Stevens T, Helmke KJ, Zepeda V, Qi LS, Lim WA. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth Biol , 2014, 3(12):929-931. [54] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell , 2013, 154(2): 442-451. [55] Choudhary E, Thakur P, Pareek M, Agarwal N. Gene silencing by CRISPR interference in mycobacteria. Nat Commun , 2015, 6: 6267. [56] Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol , 2013, 31(12): 1137-1142. |