遗传 ›› 2021, Vol. 43 ›› Issue (1): 4-15.doi: 10.16288/j.yczz.20-200
徐海冬1,2,3, 宁博林1,2,3, 牟芳1,2,3, 李辉1,2,3, 王宁1,2,3()
收稿日期:
2020-07-07
修回日期:
2020-10-19
出版日期:
2021-01-20
发布日期:
2020-12-11
通讯作者:
王宁
E-mail:wangning@neau.edu.cn
作者简介:
徐海冬,在读博士研究生,专业方向:动物遗传育种与繁殖。E-mail: 基金资助:
Haidong Xu1,2,3, Bolin Ning1,2,3, Fang Mu1,2,3, Hui Li1,2,3, Ning Wang1,2,3()
Received:
2020-07-07
Revised:
2020-10-19
Online:
2021-01-20
Published:
2020-12-11
Contact:
Wang Ning
E-mail:wangning@neau.edu.cn
Supported by:
摘要:
真核生物基因的前体mRNA (pre-mRNA)及一些lncRNA在成熟过程中其3'端会发生剪切和多聚腺苷酸化反应(cleavage and polyadenylation, C/P),C/P的发生需要多聚腺苷酸化信号(polyadenylation signal, PAS)的存在。选择性多聚腺苷酸化(alternative cleavage and polyadenylation, APA)是指具有多个PAS的基因,在其mRNA 3?端成熟过程中,由于选择不同的PAS,导致产生出多个3'UTR长度和序列组成不同的转录异构体。3?UTR长度和序列的不同会影响mRNA的稳定性、翻译效率、运输和细胞定位等,因此APA是真核生物的一个重要转录后调控方式。近年来,对大量动物、植物及酵母的基因组测序分析发现,APA在真核生物广泛存在,针对APA的生物学效应和调控机制开展了一系列研究。目前已鉴定出许多APA调控的顺式调控元件和反式作用因子。本文重点介绍了APA生物学效应和调控机制的最新研究进展,并探讨了未来APA调控的研究方向。
徐海冬, 宁博林, 牟芳, 李辉, 王宁. 选择性多聚腺苷酸化的生物学效应及其调控机制研究进展[J]. 遗传, 2021, 43(1): 4-15.
Haidong Xu, Bolin Ning, Fang Mu, Hui Li, Ning Wang. Advances of functional consequences and regulation mechanisms of alternative cleavage and polyadenylation[J]. Hereditas(Beijing), 2021, 43(1): 4-15.
图1
C/P反应的顺式调控元件和反式作用因子 CPSF:剪切多聚腺苷酸化特异因子(cleavage and polyadenylation specificity factor);CSTF:剪切激活因子(cleavage stimulation factor);CFIIm:剪切因子复合物I (cleavage factor I m);RBP:RNA结合蛋白(RNA binding protein);RNAP II:RNA聚合酶II(RNA polymerase II);PAP:poly(A)聚合酶(poly(A) polymerase);PABPN1:核poly(A)结合蛋白(nuclear poly(A)-binding protein 1);WDR33:WD重复域33 (WD repeat domain 33);FIP1:PAP互作因子(factor interacting with PAP);CLP1:C/P因子亚基1 (cleavage factor polyribonucleotide kinase subunit 1);PCF11:C/P因子亚基(cleavage and polyadenylation factor subunit);PAS:多聚腺苷酸化信号(polyadenylation signal)。根据参考文献[1, 8~10]总结绘制。"
[1] |
Tian B, Manley JL . Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol, 2017,18(1):18-30.
doi: 10.1038/nrm.2016.116 pmid: 27677860 |
[2] |
Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen RH, Rohl CA, Johnson JM, Babak T . A quantitative atlas of polyadenylation in five mammals. Genome Res, 2012,22(6):1173-1183.
doi: 10.1101/gr.132563.111 |
[3] |
Brutman JN, Zhou X, Zhang YZ, Michal J, Stark B, Jiang ZH, Davis JF . Mapping diet-induced alternative polyadenylation of hypothalamic transcripts in the obese rat. Physiol Behav, 2018,188:173-180.
doi: 10.1016/j.physbeh.2018.01.026 pmid: 29391168 |
[4] |
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A . Implications of polyadenylation in health and disease. Nucleus, 2014,5(6):508-519.
doi: 10.4161/nucl.36360 pmid: 25484187 |
[5] |
Gruber AJ, Zavolan M . Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet, 2019,20(10):599-614.
doi: 10.1038/s41576-019-0145-z pmid: 31267064 |
[6] |
Patel R, Brophy C, Hickling M, Neve J, Furger A . Alternative cleavage and polyadenylation of genes associated with protein turnover and mitochondrial function are deregulated in Parkinson's, Alzheimer's and ALS disease. BMC Med Genomics, 2019,12(1):60.
doi: 10.1186/s12920-019-0509-4 pmid: 31072331 |
[7] |
Nourse J, Spada S, Danckwardt S . Emerging roles of RNA 3'-end cleavage and polyadenylation in pathogenesis, diagnosis and therapy of human disorders. Biomolecules, 2020,10(6):915.
doi: 10.3390/biom10060915 |
[8] |
Jafari Najaf Abadi MH, Shafabakhsh R, Asemi Z, Mirzaei HR, Sahebnasagh R, Mirzaei H, Hamblin MR . CFIm25 and alternative polyadenylation: conflicting roles in cancer. Cancer Lett, 2019,459:112-121.
doi: 10.1016/j.canlet.2019.114430 pmid: 31181319 |
[9] | Neve J, Patel R, Wang ZQ, Louey A, Furger AM . Cleavage and polyadenylation: ending the message expands gene regulation. RNA Biololgy, 2017,14(7):865-890. |
[10] |
Zheng DH, Tian B . RNA-binding proteins in regulation of alternative cleavage and polyadenylation. Adv Exp Med Biol, 2014,825:97-127.
doi: 10.1007/978-1-4939-1221-6_3 |
[11] | Knipe DM, Howley PM. Fields virology. 6th ed. 2013: Lippincott Williams & Wilkins Publishing. |
[12] |
Chan SL, Huppertz I, Yao CG, Weng LJ, Moresco JJ, Yates JR 3rd, Ule J, Manley JL, Shi YS,. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing. Genes Dev, 2014,28(21):2370-2380.
doi: 10.1101/gad.250993.114 pmid: 25301780 |
[13] |
Hamilton K, Sun YD, Tong L . Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal. RNA, 2019,25(12):1673-1680.
doi: 10.1261/rna.070870.119 pmid: 31462423 |
[14] |
Sha QQ, Zhang J, Fan HY . A story of birth and death: mRNA translation and clearance at the onset of maternal- to-zygotic transition in mammals. Biol Reprod, 2019,101(3):579-590.
doi: 10.1093/biolre/ioz012 pmid: 30715134 |
[15] |
Winata CL, Łapiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S. Cytoplasmic polyadenylation- mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development, 2018,145(1): dev159566.
doi: 10.1242/dev.160051 pmid: 29217751 |
[16] |
Shao M, Lu T, Zhang C, Zhang YZ, Kong SH, Shi DL . Rbm24 controls poly(A) tail length and translation efficiency of crystallin mRNAs in the lens via cytoplasmic polyadenylation. Proc Natl Acad Sci USA, 2020,117(13):7245-7254.
doi: 10.1073/pnas.1917922117 pmid: 32170011 |
[17] |
Villalba A, Coll O, Gebauer F . Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev, 2011,21(4):452-457.
doi: 10.1016/j.gde.2011.04.006 |
[18] |
Dai XX, Jiang JC, Sha QQ, Jiang Y, Ou XH, Fan HY . A combinatorial code for mRNA 3'-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res, 2019,47(1):328-340.
doi: 10.1093/nar/gky971 pmid: 30335155 |
[19] |
Charlesworth A, Meijer HA, de Moor CH,. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA, 2013,4(4):437-461.
doi: 10.1002/wrna.1171 pmid: 23776146 |
[20] |
Chen W, Jia Q, Song YF, Fu HH, Wei G, Ni T . Alternative polyadenylation: methods, findings, and impacts. Genomics Proteomics Bioinformatics, 2017,15(5):287-300.
doi: 10.1016/j.gpb.2017.06.001 pmid: 29031844 |
[21] | Lau SL . Molecular characterization of the chicken growth hormone receptor gene. Hong Kong: Hong Kong University, 2005. |
[22] |
Lau JS, Yip CW, Law KM, Leung FC . Cloning and characterization of chicken growth hormone binding protein (cGHBP). Domest Anim Endocrinol, 2007,33(1):107-121.
doi: 10.1016/j.domaniend.2006.04.012 pmid: 16814975 |
[23] |
Dehkhoda F, Lee CMM, Medina J, Brooks AJ . The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front Endocrinol, 2018,9:35.
doi: 10.3389/fendo.2018.00035 |
[24] |
Cheng LC, Zheng DH, Baljinnyam E, Sun FZ, Ogami K, Yeung PL, Hoque M, Lu CW, Manley JL, Tian B . Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun, 2020,11(1):3182.
doi: 10.1038/s41467-020-16959-2 pmid: 32576858 |
[25] |
Di Giammartino DC, Li WC, Ogami K, Yashinskie JJ, Hoque M, Tian B, Manley JL . RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs. Genes Dev, 2014,28(20):2248-2260.
doi: 10.1101/gad.245787.114 pmid: 25319826 |
[26] |
Turner RE, Pattison AD, Beilharz TH . Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin Cell Dev Biol, 2018,75:61-69.
doi: 10.1016/j.semcdb.2017.08.056 pmid: 28867199 |
[27] |
Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, Plenge RM, Koeuth T, Ortmann WA, Hom G, Bauer JW, Gillett C, Burtt N, Cunninghame Graham DS, Onofrio R, Petri M, Gunnarsson I, Svenungsson E, Rönnblom L, Nordmark G, Gregersen PK, Moser K, Gaffney PM, Criswell LA, Vyse TJ, Syvänen AC, Bohjanen PR, Daly MJ, Behrens TW, Altshuler D . Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci USA, 2007,104(16):6758-6763.
doi: 10.1073/pnas.0701266104 pmid: 17412832 |
[28] |
Boutet SC, Cheung TH, Quach NL, Liu L, Prescott SL, Edalati A, Iori K, Rando TA . Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell, 2012,10(3):327-336.
doi: 10.1016/j.stem.2012.01.017 |
[29] |
de Morree A, Klein JDD, Gan Q, Farup J, Urtasun A, Kanugovi A, Bilen B, van Velthoven CTJ, Quarta M, Rando TA . Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science, 2019,366(6466):734-738.
doi: 10.1126/science.aax1694 pmid: 31699935 |
[30] |
Gruber AR, Martin G, Müller P, Schmidt A, Gruber AJ, Gumienny R, Mittal N, Jayachandran R, Pieters J, Keller W, van Nimwegen E, Zavolan M,. Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun, 2014,5:5465.
doi: 10.1038/ncomms6465 pmid: 25413384 |
[31] |
Spies N, Burge CB, Bartel DP . 3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res, 2013,23(12):2078-2090.
doi: 10.1101/gr.156919.113 |
[32] |
Spangenberg L, Shigunov P, Abud APR, Cofré AR, Stimamiglio MA, Kuligovski C, Zych J, Schittini AV, Costa ADT, Rebelatto CK, Brofman PRS, Goldenberg S, Correa A, Naya H, Dallagiovanna B . Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes. Stem Cell Res, 2013,11(2):902-912.
doi: 10.1016/j.scr.2013.06.002 pmid: 23845413 |
[33] |
Jambhekar A, Derisi JL . Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA, 2007,13(5):625-642.
doi: 10.1261/rna.262607 pmid: 17449729 |
[34] |
Shi M, Zhang H, Wu XD, He ZS, Wang LT, Yin SY, Tian B, Li GH, Cheng H . ALYREF mainly binds to the 5' and the 3' regions of the mRNA in vivo. Nucleic Acids Res, 2017,45(16):9640-9653.
doi: 10.1093/nar/gkx597 pmid: 28934468 |
[35] |
Ruepp MD, Aringhieri C, Vivarelli S, Cardinale S, Paro S, Schümperli D, Barabino SML . Mammalian pre-mRNA 3' end processing factor CF I m 68 functions in mRNA export. Mol Biol Cell, 2009,20(24):5211-5223.
doi: 10.1091/mbc.e09-05-0389 pmid: 19864460 |
[36] |
Chen SL, Wang RJ, Zheng DH, Zhang H, Chang XY, Wang K, Li WC, Fan J, Tian B, Cheng H. The mRNA export receptor NXF1 coordinates transcriptional dynamics, alternative polyadenylation, mRNA export. Mol Cell, 2019, 74(1): 118- 131.e7.
doi: 10.1016/j.molcel.2019.01.026 pmid: 30819645 |
[37] |
An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, Xu BJ . Distinct role of long 3' UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell, 2008,134(1):175-187.
doi: 10.1016/j.cell.2008.05.045 pmid: 18614020 |
[38] |
Andreassi C, Riccio A . To localize or not to localize: mRNA fate is in 3'UTR ends. Trends Cell Biol, 2009,19(9):465-474.
doi: 10.1016/j.tcb.2009.06.001 |
[39] |
Berkovits BD, Mayr C . Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature, 2015,522(7556):363-367.
doi: 10.1038/nature14321 pmid: 25896326 |
[40] |
Davis R, Shi YS . The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation. J Zhejiang Univ Sci B, 2014,15(5):429-437.
doi: 10.1631/jzus.B1400076 pmid: 24793760 |
[41] |
Marsollier AC, Joubert R, Mariot V, Dumonceaux J . Targeting the polyadenylation signal of pre-mRNA: a new gene silencing approach for facioscapulohumeral dystrophy. Int J Mol Sci, 2018,19(5):1347.
doi: 10.3390/ijms19051347 |
[42] |
Nanavaty V, Abrash EW, Hong CJ, Park S, Fink EE, Li ZY, Sweet TJ, Bhasin JM, Singuri S, Lee BH, Hwang TH, Ting AH. DNA methylation regulates alternative polyadenylation via CTCF and the cohesin complex. Mol Cell, 2020, 78(4): 752-764. e6.
doi: 10.1016/j.molcel.2020.03.024 pmid: 32333838 |
[43] |
Michaels KK, Mohd Mostafa S, Ruiz Capella J, Moore CL . Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res, 2020,48(10):5407-5425.
doi: 10.1093/nar/gkaa292 pmid: 32356874 |
[44] |
Yue YN, Liu J, Cui XL, Cao J, Luo GZ, Zhang ZZ, Cheng T, Gao MS, Shu X, Ma HH, Wang FQ, Wang XX, Shen B, Wang YZ, Feng XH, He C, Liu JZ . VIRMA mediates preferential m 6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation . Cell Discov, 2018,4:10.
doi: 10.1038/s41421-018-0019-0 pmid: 29507755 |
[45] |
Patraquim P, Warnefors M, Alonso CR . Evolution of Hox post-transcriptional regulation by alternative polyadenylation and microRNA modulation within 12 Drosophila genomes. Mol Biol Evol, 2011,28(9):2453-2460.
doi: 10.1093/molbev/msr073 |
[46] |
Pinto PAB, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, Coelho PA, Carmo AM, Sunkel CE, Proudfoot NJ, Moreira A . RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J, 2011,30(12):2431-2444.
doi: 10.1038/emboj.2011.156 |
[47] |
Maita H, Nakagawa S . What is the switch for coupling transcription and splicing? RNA Polymerase II C-terminal domain phosphorylation, phase separation and beyond. Wiley Interdiscip Rev RNA, 2020,11(1):e1574.
doi: 10.1002/wrna.1574 pmid: 31680436 |
[48] |
Yu LJ, Volkert MR . UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res, 2013,41(5):3104-3114.
doi: 10.1093/nar/gkt020 pmid: 23355614 |
[49] |
Nazim M, Masuda A, Rahman MA, Nasrin F, Takeda JI, Ohe K, Ohkawara B, Ito M, Ohno K . Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Res, 2017,45(3):1455-1468.
doi: 10.1093/nar/gkw823 pmid: 28180311 |
[50] |
Lackford B, Yao CG, Charles GM, Weng LJ, Zheng XF, Choi EA, Xie XH, Wan J, Xing Y, Freudenberg JM, Yang PY, Jothi R, Hu G, Shi YS . Fip1 regulates mRNA alternative polyadenylation to promote stem cell self- renewal. EMBO J, 2014,33(8):878-889.
doi: 10.1002/embj.201386537 |
[51] |
Hwang HW, Park CY, Goodarzi H, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB . PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non- canonical poly(A) site usage. Cell Rep, 2016,15(2):423-435.
doi: 10.1016/j.celrep.2016.03.023 pmid: 27050522 |
[52] |
Zhou ZJ, Qu J, He L, Zhu Y, Yang SZ, Zhang F, Guo T, Peng H, Chen P, Zhou Y . Stiff matrix instigates type I collagen biogenesis by mammalian cleavage factor I complex-mediated alternative polyadenylation. JCI Insight, 2020,5(3):e133972.
doi: 10.1172/jci.insight.133972 |
[53] |
Fontana GA, Rigamonti A, Lenzken SC, Filosa G, Alvarez R, Calogero R, Bianchi ME, Barabino SML . Oxidative stress controls the choice of alternative last exons via a Brahma-BRCA1-CstF pathway. Nucleic Acids Res, 2017,45(2):902-914.
doi: 10.1093/nar/gkw780 pmid: 27591253 |
[54] |
Brumbaugh J, Di Stefano B, Wang XY, Borkent M, Forouzmand E, Clowers KJ, Ji F, Schwarz BA, Kalocsay M, Elledge SJ, Chen Y, Sadreyev RI, Gygi SP, Hu G, Shi YS, Hochedlinger K. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell, 2018,172(1-2): 106-120. e21.
doi: 10.1016/j.cell.2017.11.023 pmid: 29249356 |
[55] |
Roy D, Bhanja Chowdhury J, Ghosh S . Polypyrimidine tract binding protein (PTB) associates with intronic and exonic domains to squelch nuclear export of unspliced RNA. FEBS Lett, 2013,587(23):3802-3807.
doi: 10.1016/j.febslet.2013.10.005 |
[56] |
Gawande B, Robida MD, Rahn A, Singh R . Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J, 2006,25(6):1263-1272.
doi: 10.1038/sj.emboj.7601022 pmid: 16511567 |
[57] |
Jenal M, Elkon R, Loayza-Puch F, van Haaften G, Kühn U, Menzies FM, Oude Vrielink JAF, Bos AJ, Drost J, Rooijers K, Rubinsztein DC, Agami R,. The poly(A)- binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell, 2012,149(3):538-553.
doi: 10.1016/j.cell.2012.03.022 pmid: 22502866 |
[58] | Mohibi S, Zhang J, Chen XB . PABPN1, a target of p63, modulates keratinocyte differentiation through regulation of p63α mRNA translation. J Invest Dermatol, 2020,11(140):2166-2177. |
[59] |
Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T . Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J, 2012,31(20):4020-4034.
doi: 10.1038/emboj.2012.251 |
[60] |
Naganuma T, Hirose T . Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol, 2013,10(3):456-461.
doi: 10.4161/rna.23547 |
[61] |
Ji XJ, Wan J, Vishnu M, Xing Y, Liebhaber SA. αCP Poly(C) binding proteins act as global regulators of alternative polyadenylation. Mol Cell Biol, 2013,33(13):2560-2573.
doi: 10.1128/MCB.01380-12 |
[62] |
Juge F, Audibert A, Benoit B, Simonelig M . Tissue- specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells. RNA, 2000,6(11):1529-1538.
doi: 10.1017/s1355838200001266 pmid: 11105753 |
[63] |
Luo WT, Ji Z, Pan ZH, You B, Hoque M, Li WC, Gunderson SI, Tian B . The conserved intronic cleavage and polyadenylation site of CstF-77 gene imparts control of 3' end processing activity through feedback autoregulation and by U1 snRNP. Plos Genet, 2013,9(7):e1003613.
doi: 10.1371/journal.pgen.1003613 pmid: 23874216 |
[64] |
Yao CG, Biesinger J, Wan J, Weng LJ, Xing Y, Xie XH, Shi YS . Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc Natl Acad Sci USA, 2012,109(46):18773-18778.
doi: 10.1073/pnas.1211101109 pmid: 23112178 |
[65] |
Yao CG, Choi EA, Weng LJ, Xie XH, Wan J, Xing Y, Moresco JJ, Tu PG, Yates JR, Shi YS . Overlapping and distinct functions of CstF64 and CstF64τ in mammalian mRNA 3' processing. RNA, 2013,19(12):1781-1790.
doi: 10.1261/rna.042317.113 |
[66] |
Ceelie H, Spaargaren-van Riel CC, Bertina RM, Vos HL. G20210A is a functional mutation in the prothrombin gene; effect on protein levels and 3'-end formation. J Thromb Haemost, 2004,2(1):119-127.
doi: 10.1111/j.1538-7836.2003.00493.x pmid: 14717975 |
[67] | Shima T, Davis AG, Miyauchi S, Kochi Y, Johnson DT, Stoner SA, Junichiro Y, Miyamoto T, Zhou JH, Ball ED, Akashi K, Zhang DE . CPSF1 regulates AML1-ETO fusion gene polyadenylation and stability in t(8; 21) acute myelogenous leukemia. Blood, 2017,130(Suppl.1):2498. |
[68] |
Haneklaus M, O'neil JD, Clark AR, Masters SL, O'neill LAJ. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. J Biol Chem, 2017,292(17):6869-6881.
doi: 10.1074/jbc.M116.772947 pmid: 28302726 |
[69] |
Masamha CP, Xia Z, Yang JX, Albrecht TR, Li M, Shyu AB, Li W, Wagner EJ . CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 2014,510(7505):412-416.
doi: 10.1038/nature13261 |
[70] |
Melamed Z, López-Erauskin J, Baughn MW, Zhang OY, Drenner K, Sun Y, Freyermuth F, Mcmahon MA, Beccari MS, Artates JW, Ohkubo T, Rodriguez M, Lin NW, Wu DM, Bennett CF, Rigo F, Da Cruz S, Ravits J, Lagier- Tourenne C, Cleveland DW . Premature polyadenylation- mediated loss of stathmin-2 is a hallmark of TDP-43- dependent neurodegeneration. Nat Neurosci, 2019,22(2):180-190.
doi: 10.1038/s41593-018-0293-z pmid: 30643298 |
[71] |
Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS . Alternative polyadenylation and miR-34 family members regulate tau expression. J Neurochem, 2013,127(6):739-749.
doi: 10.1111/jnc.12437 pmid: 24032460 |
[72] |
Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, Abeliovich A . Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nat Commun, 2012,3:1084.
doi: 10.1038/ncomms2032 pmid: 23011138 |
[73] |
Lee SH, Singh I, Tisdale S, Abdel-Wahab O, Leslie CS, Mayr C . Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature, 2018,561(7721):127-131.
doi: 10.1038/s41586-018-0465-8 pmid: 30150773 |
[74] |
Singh I, Lee SH, Sperling AS, Samur MK, Tai YT, Fulciniti M, Munshi NC, Mayr C, Leslie CS . Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nat Commun, 2018,9(1):1716.
doi: 10.1038/s41467-018-04112-z pmid: 29712909 |
[1] | 王舜泽, 江丰, 朱东丽, 杨铁林, 郭燕. Hi-C技术在三维基因组学和疾病致病机理研究中的应用[J]. 遗传, 2023, 45(4): 279-294. |
[2] | 周聪, 周强伟, 成盛, 李国亮. CTCF在介导三维基因组形成及调控基因表达中的研究进展[J]. 遗传, 2021, 43(9): 816-821. |
[3] | 宁椿游,何梦楠,唐茜子,朱庆,李明洲,李地艳. 基于Hi-C技术哺乳动物三维基因组研究进展[J]. 遗传, 2019, 41(3): 215-233. |
[4] | 施剑,李艳明,方向东. 长链非编码RNA通过细胞核高级结构调控真核基因表达及其临床意义[J]. 遗传, 2017, 39(3): 189-199. |
[5] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[6] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[7] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[8] | 孙博渊, 涂剑波, 李英, 杨明耀. 基因及其顺式调控元件在动物表型进化中的作用[J]. 遗传, 2014, 36(6): 525-535. |
[9] | 施子晗, 李泽琴, 张根发. 植物组蛋白赖氨酸化修饰参与基因表达调控的机理[J]. 遗传, 2014, 36(3): 208-219. |
[10] | 张韬 杨足君. 植物基因组DNase I超敏感位点的研究进展[J]. 遗传, 2013, 35(7): 867-874. |
[11] | 夏天,肖丙秀,郭俊明. 长链非编码RNA的作用机制及其研究方法[J]. 遗传, 2013, 35(3): 269-280. |
[12] | 秦丹 徐存拴. 非编码DNA序列的功能及其鉴定[J]. 遗传, 2013, 35(11): 1253-1264. |
[13] | 李泽琴,李静晓,张根发. 植物抗坏血酸过氧化物酶的表达调控以及对非生物胁迫的耐受作用[J]. 遗传, 2013, 35(1): 45-54. |
[14] | 罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
[15] | 孟雅楠,孟丽军,宋亚娟,刘美玲,张秀军. 小RNA分子与精子发生调控[J]. 遗传, 2011, 33(1): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: