遗传 ›› 2023, Vol. 45 ›› Issue (2): 115-127.doi: 10.16288/j.yczz.22-346
收稿日期:
2022-11-01
修回日期:
2022-12-27
出版日期:
2023-02-20
发布日期:
2022-12-28
通讯作者:
孙建伟
E-mail:13648831440@139.com;jwsun@ynu.edu.cn
作者简介:
常栋,硕士研究生,研究方向:生物与医药。E-mail: 基金资助:
Dong Chang1(), Xiangxiang Liu1, Rui Liu2, Jianwei Sun1()
Received:
2022-11-01
Revised:
2022-12-27
Online:
2023-02-20
Published:
2022-12-28
Contact:
Sun Jianwei
E-mail:13648831440@139.com;jwsun@ynu.edu.cn
Supported by:
摘要:
FSCN1是一种肌动蛋白结合蛋白,能够将肌动蛋白丝集成一束。FSCN1在几乎所有的转移性肿瘤中高表达,并与大部分肿瘤的不良预后密切相关。FSCN1在基底样和三阴性乳腺癌中高度表达。近年来关于FSCN1的报道愈发频繁,随着深入研究发现,FSCN1除了促进癌细胞的迁移、侵袭和转移定植,维持癌细胞自我更新和增强耐药性,还具有调控癌细胞的糖脂代谢及线粒体重塑等功能。本文从FSCN1的结构和调节形式,促进乳腺癌发生和转移的分子机制,以及其在乳腺癌中的作用及功能展开介绍,最后对FSCN1在临床上的价值进行了总结,为FSCN1在乳腺癌领域的研究提供重要的借鉴和参考。
常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127.
Dong Chang, Xiangxiang Liu, Rui Liu, Jianwei Sun. The role and regulatory mechanism of FSCN1 in breast tumorigenesis and progression[J]. Hereditas(Beijing), 2023, 45(2): 115-127.
表2
抑制FSCN1的小分子化合物"
序号 | 名称 | 来源 | 作用机制 | 参考文献 |
---|---|---|---|---|
1 | 米格拉他汀类似物 | 链霉菌或人工合成 | 占据FSCN1的肌动蛋白结合部位 | [ |
2 | LAP3抑制剂 | 天然海产品 | 间接下调FSCN1的表达 | [ |
3 | 沙枣提取物 | 沙枣 | 减少HER2阳性乳腺癌细胞中FSCN1的表达 | [ |
4 | 岛霉素C | 白链霉菌 | 间接介导FSCN1的下调 | [ |
5 | 四氢嘧啶类化合物 | 人工合成 | 与FSCN1的活性部位结合 | [ |
6 | DHA | 体内转化或食物来源 | 间接下调FSCN1的表达 | [ |
7 | Crispene E | 波叶青牛胆 | 间接介导FSCN1的下调 | [ |
8 | 噻唑类化合物 | 人工合成 | 与FSCN1互作以抑制其活性 | [ |
9 | 葡萄籽提取物 | 葡萄籽 | 间接下调FSCN1的表达 | [ |
[1] |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 |
[2] | Waks AG, Winer EP. Breast cancer treatment: a review. JAMA, 2019, 321(3): 288-300. |
[3] |
Kennecke H, Yerushalmi R, Woods R, Cheang MCU, Voduc D, Speers CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol, 2010, 28(20): 3271-3277.
doi: 10.1200/JCO.2009.25.9820 pmid: 20498394 |
[4] | Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. |
[5] |
Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature, 2016, 529(7586): 298-306.
doi: 10.1038/nature17038 |
[6] |
Obenauf AC, Massague J. Surviving at a distance: organ-specific metastasis. Trends Cancer, 2015, 1(1): 76-91.
doi: S2405-8033(15)00010-2 pmid: 28741564 |
[7] |
Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science, 2009, 326(5957): 1208-1212.
doi: 10.1126/science.1175862 pmid: 19965462 |
[8] |
Kane RE. Preparation and purification of polymerized actin from sea-urchin egg extracts. J Cell Biol, 1975, 66(2): 305-315.
pmid: 1095598 |
[9] |
Tilney LG. Actin-filaments in the acrosomal reaction of limulus sperm. Motion generated by alterationa in the packing of the filaments. J Cell Biol, 1975, 64(2): 289-310.
pmid: 1117029 |
[10] |
Adams JC. Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol, 2004, 16(5): 590-596.
doi: 10.1016/j.ceb.2004.07.009 pmid: 15363811 |
[11] |
Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC. Fascins, and their roles in cell structure and function. Bioessays, 2002, 24(4): 350-361.
pmid: 11948621 |
[12] |
Lin SC, Taylor MD, Singh PK, Yang SY. How does fascin promote cancer metastasis? FEBS J, 2021, 288(5): 1434-1446.
doi: 10.1111/febs.15484 |
[13] | Liu X, Zhao MM, Xie Y, Li P, Wang OM, Zhou BX, Yang LL, Nie Y, Cheng L, Song XC, Jin CZ, Han FZ. Null mutation of the fascin 2 gene by TALEN leading toprogressive hearing loss and retinal degeneration in C57BL/6J mice. G3 (Bethesda), 2018, 8(10): 3221-3230. |
[14] |
Tubb B, Mulholland DJ, Vogl W, Lan ZJ, Niederberger C, Cooney A, Bryan J. Testis fascin (FSCN3): a novel paralog of the actin-bundling protein fascin expressed specifically in the elongate spermatid head. Exp Cell Res, 2002, 275(1): 92-109.
doi: 10.1006/excr.2002.5486 |
[15] |
Al-Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al-Tweigeri T, Ajarim D, Adra C. Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One, 2011, 6(11): e27339.
doi: 10.1371/journal.pone.0027339 |
[16] |
Chen L, Yang SY, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature, 2010, 464(7291): 1062-1066.
doi: 10.1038/nature08978 |
[17] | Hao LY, Liu Y, Yu XQ, Zhu YR, Zhu YC. Formin homology domains of daam1 bind to fascin and collaboratively promote pseudopodia formation and cell migration in breast cancer. Cell Prolif, 2021, 54(3): e12994. |
[18] |
Barnawi R, Al-Khaldi S, Bakheet T, Fallatah M, Alaiya A, Ghebeh H, Al-Alwan M. Fascin activates beta-catenin signaling and promotes breast cancer stem cell function mainly through focal adhesion kinase (FAK): relation with disease progression. Front Oncol, 2020, 10: 440.
doi: 10.3389/fonc.2020.00440 |
[19] |
Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin is critical for the maintenance of breast cancer stem cell pool predominantly via the activation of the Notch self-renewal pathway. Stem Cells, 2016, 34(12): 2799-2813.
doi: 10.1002/stem.2473 pmid: 27502039 |
[20] |
Huang FK, Han SQ, Xing BW, Huang JY, Liu BQ, Bordeleau F, Reinhart-King CA, Zhang JJ, Huang XY. Targeted inhibition of fascin function blocks tumour invasion and metastatic colonization. Nat Commun, 2015, 6: 7465.
doi: 10.1038/ncomms8465 |
[21] |
Ghebeh H, Al-Khaldi S, Olabi S, Al-Dhfyan A, Al-Mohanna F, Barnawi R, Tulbah A, Al-Tweigeri T, Ajarim D, Al-Alwan M. Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br J Cancer, 2014, 111(8): 1552-1561.
doi: 10.1038/bjc.2014.453 |
[22] |
Xing P, Li JG, Jin F, Zhao TT, Liu Q, Dong HT, Wei XL. Fascin, an actin-bundling protein, promotes breast cancer progression in vitro. Cell Biochem Funct, 2011, 29(4): 303-310.
doi: 10.1002/cbf.1750 pmid: 21491467 |
[23] |
Sun JW, He HF, Xiong Y, Lu S, Shen JL, Cheng AN, Chang WC, Hou MF, Lancaster JM, Kim M, Yang SY. Fascin protein is critical for transforming growth factor beta protein-induced invasion and filopodia formation in spindle-shaped tumor cells. J Biol Chem, 2011, 286(45): 38865-38875.
doi: 10.1074/jbc.M111.270413 |
[24] |
Wang CQ, Tang CH, Wang Y, Jin LL, Wang Q, Li XN, Hu GN, Huang BF, Zhao YM, Su CM. FSCN1 gene polymorphisms: biomarkers for the development and progression of breast cancer. Sci Rep, 2017, 7(1): 15887.
doi: 10.1038/s41598-017-16196-6 |
[25] |
Lee HJ, An HJ, Kim TH, Kim G, Kang H, Heo JH, Kwon AY, Kim S. Fascin expression is inversely correlated with breast cancer metastasis suppressor 1 and predicts a worse survival outcome in node-negative breast cancer patients. J Cancer, 2017, 8(16): 3122-9.
doi: 10.7150/jca.22046 pmid: 29158783 |
[26] |
Esnakula AK, Ricks-Santi L, Kwagyan J, Kanaan YM, Dewitty RL, Wilson LL, Gold B, Frederick WAI, Naab TJ. Strong association of fascin expression with triple negative breast cancer and basal-like phenotype in African-American women. J Clin Pathol, 2014, 67(2): 153-160.
doi: 10.1136/jclinpath-2013-201698 pmid: 23986556 |
[27] |
Barnawi R, Al-Khaldi S, Majid S, Qattan A, Bakheet T, Fallatah M, Ghebeh H, Alajez NM, Al-Alwan M. Comprehensive transcriptome and pathway analyses revealed central role for fascin in promoting triple-negative breast cancer progression. Pharmaceuticals (Basel), 2021, 14(12): 1228.
doi: 10.3390/ph14121228 |
[28] |
Wang CQ, Tang CH, Chang HT, Li XN, Zhao YM, Su CM, Hu GN, Zhang T, Sun XX, Zeng Y, Du Z, Wang Y, Huang BF. Fascin-1 as a novel diagnostic marker of triple- negative breast cancer. Cancer Med, 2016, 5(8): 1983-1988.
doi: 10.1002/cam4.746 |
[29] |
Min KW, Chae SW, Kim DH, Do SI, Kim K, Lee HJ, Sohn JH, Pyo JS, Kim DH, Oh S, Choi SH, Park YL, Park CH. Fascin expression predicts an aggressive clinical course in patients with advanced breast cancer. Oncol Lett, 2015, 10(1): 121-130.
doi: 10.3892/ol.2015.3191 |
[30] |
Rodríguez-Pinilla SM, Sarrió D, Honrado E, Hardisson D, Calero F, Benitez J, Palacios J. Prognostic significance of basal-like phenotype and fascin expression in node- negative invasive breast carcinomas. Clin Cancer Res, 2006, 12(5): 1533-1539.
pmid: 16533778 |
[31] |
Yoder BJ, Tso E, Skacel M, Pettay J, Tarr S, Budd T, Tubbs RR, Adams JC, Hicks DG. The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clin Cancer Res, 2005, 11(1): 186-192.
pmid: 15671545 |
[32] |
Liu HL, Zhang Y, Li L, Cao JM, Guo YJ, Wu YY, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics, 2021, 20: 240-264.
doi: 10.1016/j.omto.2020.12.014 |
[33] |
Duh FM, Latif F, Weng YK, Geil L, Modi W, Stackhouse T, Matsumura F, Duan DR, Linehan WM, Lerman MI, Gnarra JR. CDNA cloning and expression of the human homolog of the sea-urchin fascin and drosophila singed genes which encodes an actin-bundling protein. DNA Cell Biol, 1994, 13(8): 821-827.
pmid: 8068206 |
[34] |
Sedeh RS, Fedorov AA, Fedorov EV, Ono S, Matsumura F, Almo SC, Bathe M. Structure, evolutionary conservation, and conformational dynamics of Homo sapiens fascin-1, an F-actin crosslinking protein. J Mol Biol, 2010, 400(3): 589-604.
doi: 10.1016/j.jmb.2010.04.043 |
[35] |
Yang SY, Huang FK, Huang JY, Chen S, Jakoncic J, Leo-Macias A, Diaz-Avalos R, Chen L, Zhang JJ, Huang XY. Molecular mechanism of fascin function in filopodial formation. J Biol Chem, 2013, 288(1): 274-284.
doi: 10.1074/jbc.M112.427971 pmid: 23184945 |
[36] |
Aramaki S, Mayanagi K, Jin MY, Aoyama K, Yasunaga T. Filopodia formation by crosslinking of F-actin with fascin in two different binding manners. Cytoskeleton, 2016, 73(7): 365-374.
doi: 10.1002/cm.21309 |
[37] |
Jansen S, Collins A, Yang CS, Rebowski G, Svitkina T, Dominguez R. Mechanism of actin filament bundling by fascin. J Biol Chem, 2011, 286(34): 30087-30096.
doi: 10.1074/jbc.M111.251439 pmid: 21685497 |
[38] |
Bros M, Ross XL, Pautz A, Reske-Kunz AB, Ross R. The human fascin gene promoter is highly active in mature dendritic cells due to a stage-specific enhancer. J Immunol, 2003, 171(4): 1825-1834.
pmid: 12902483 |
[39] |
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity, 2019, 51(1): 27-41.
doi: S1074-7613(19)30295-X pmid: 31315034 |
[40] | Snyder M, Huang XY, Zhang JJ. Signal transducers and activators of transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration. J iol hem, 2011, 286(45): 38886-38893. |
[41] |
Snyder M, Huang J, Huang XY, Zhang JJ. A signal transducer and activator of transcription 3·nuclear factor κB (STAT3·NFκB) complex is necessary for the expression of fascin in metastatic breast cancer cells in response to interleukin (IL)-6 and tumor necrosis factor (TNF)-α. J Biol Chem, 2014, 289(43): 30082-30089.
doi: 10.1074/jbc.M114.591719 pmid: 25213863 |
[42] | Mantaj J, Rahman SM, Bokshi B, Hasan CM, Jackson PJM, Parsons RB, Rahman KM. Crispene E, a cis-clerodane diterpene inhibits STAT3 dimerization in breast cancer cells. Org iomol hem, 2015, 13(13): 3882-3886. |
[43] | Xie Q, Yang ZJ, Huang XM, Zhang ZK, Li JB, Ju JH, Zhang H, Ma JY. Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway. J ematol ncol, 2019, 12(1): 60. |
[44] |
Taniguchi K, Karin M. NF-kappa B, inflammation, immunity and cancer: coming of age. Nat Rev Immunol, 2018, 18(5): 309-324.
doi: 10.1038/nri.2017.142 pmid: 29379212 |
[45] |
Acharya S, Yao J, Li P, Zhang CY, Lowery FJ, Zhang QL, Guo H, Qu JK, Yang F, Wistuba II, Piwnica-Worms H, Sahin AA, Yu DH. Sphingosine kinase1 signaling promotes metastasis of triple-negative breast cancer. Cancer Res, 2019, 79(16): 4211-4226.
doi: 10.1158/0008-5472.CAN-18-3803 pmid: 31239273 |
[46] |
Fang CY, Zhang J, Yang HL, Peng LL, Wang K, Wang YJ, Zhao X, Liu HJ, Dou CH, Shi LH, Zhao CL, Liang SJ, Li DQ, Wang XJ.Leucine aminopeptidase3 promotes migration and invasion of breast cancer cells through upregulation of fascin and matrix metalloproteinases-2/9 expression. J Cell Biochem, 2019, 120(3): 3611-3620.
doi: 10.1002/jcb.27638 |
[47] |
Yang HL, Dai G, Wang SS, Zhao Y, Wang XJ, Zhao X, Zhang H, Wei LY, Zhang L, Guo SD, Song WG, Guo L, Fang CY. Inhibition of the proliferation, migration, and invasion of human breast cancer cells by leucine aminopeptidase 3 inhibitors derived from natural marine products. Anticancer Drugs, 2020, 31(1): 60-66.
doi: 10.1097/CAD.0000000000000842 pmid: 31609768 |
[48] |
Batlle E, Massague J. Transforming growth factor-β signaling in immunity and cancer. Immunity, 2019, 50(4): 924-940.
doi: S1074-7613(19)30141-4 pmid: 30995507 |
[49] |
Sun JW, He HF, Pillai S, Xiong Y, Challa S, Xu LY, Chellappan S, Yang SY. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem, 2013, 288(52): 36971-36982.
doi: 10.1074/jbc.M113.506535 pmid: 24235142 |
[50] |
Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol, 2014, 24(1): 26-34.
doi: 10.1016/j.tcb.2013.11.002 pmid: 24295852 |
[51] | Wang CQ, Li Y, Huang BF, Zhao YM, Yuan H, Guo DF, Su CM, Hu GN, Wang Q, Long TY, Wang Y, Tang CH, Li XN. EGFR conjunct FSCN1 as a novel therapeutic strategy in triple-negative breast cancer. Sci ep, 2017, 7(1): 15654. |
[52] | Jeong BY, Cho KH, Jeong KJ, Park YY, Kim JM, Rha SY, Park CG, Mills GB, Cheong JH, Lee HY.Rab 25 augments cancer cell invasiveness through a beta1 integrin/EGFR/ VEGF-A/Snail signaling axis and expression of fascin. Exp Mol Med, 2018, 50(1): e435. |
[53] |
Guan Y, Woo PL, Rubenstein NM, Firestone GL. Transforming growth factor-alpha abrogates the glucocorticoid stimulation of tight junction formation and reverses the steroid-induced down-regulation of fascin in rat mammary epithelial tumor cells by a Ras-dependent pathway. Exp Cell Res, 2002, 273(1): 1-11.
pmid: 11795941 |
[54] |
Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6): 985-999.
doi: S0092-8674(17)30547-0 pmid: 28575679 |
[55] |
Lii CK, Chang JW, Chen JJ, Chen HW, Liu KL, Yeh SL, Wang TS, Liu SH, Tsai CH, Li CC. Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13-acetate-induced fascin- 1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/beta-catenin-mediated pathways. Oncotarget, 2016, 7(18): 25162-25179.
doi: 10.18632/oncotarget.7301 |
[56] |
Grothey A, Hashizume R, Ji H, Tubb BE, Patrick CW, Yu DH, Mooney EE, Mccrea PD. C-erbB-2/HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines. Oncogene, 2000, 19(42): 4864-4875.
doi: 10.1038/sj.onc.1203838 pmid: 11039904 |
[57] |
Jabeen A, Sharma A, Gupta I, Kheraldine H, Vranic S, Al Moustafa AE, Al Farsi HF. Elaeagnus angustifolia plant extract inhibits epithelial-mesenchymal transition and induces apoptosis via HER2 inactivation and JNK pathway in HER2-positive breast cancer cells. Molecules, 2020, 25(18): 4240.
doi: 10.3390/molecules25184240 |
[58] |
Gkretsi V, Louca M, Stylianou A, Minadakis G, Spyrou GM, Stylianopoulos T. Inhibition of breast cancer cell invasion by Ras suppressor-1 (RSU-1) silencing is reversed by growth differentiation factor-15 (GDF-15). Int J Mol Sci, 2019, 20(1): 163.
doi: 10.3390/ijms20010163 |
[59] |
Wu ZS, Wang CQ, Xiang R, Liu X, Ye S, Yang XQ, Zhang GH, Xu XC, Zhu T, Wu Q. Loss of miR-133a expression associated with poor survival of breast cancer and restoration of miR-133a expression inhibited breast cancer cell growth and invasion. Bmc Cancer, 2012, 12: 51.
doi: 10.1186/1471-2407-12-51 |
[60] |
Zhao H, Kang X, Xia XF, Wo LK, Gu XD, Hu YY, Xie XH, Chang H, Lou LH, Shen XN. miR-145 suppresses breast cancer cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal transition. Am J Transl Res, 2016, 8(7): 3106-3114.
pmid: 27508031 |
[61] |
Wu Y, Yuan MH, Wu HT, Chen WJ, Zhang ML, Ye QQ, Liu J, Zhang GJ. MicroRNA-488 inhibits proliferation and motility of tumor cells via downregulating FSCN1, modulated by Notch3 in breast carcinomas. Cell Death Dis, 2020, 11(10): 912.
doi: 10.1038/s41419-020-03121-5 pmid: 33099573 |
[62] | Chang CW, Yu JC, Hsieh YH, Yao CC, Chao JI, Chen PM, Hsieh HY, Hsiung CN, Chu HW, Shen CY, Cheng CW. MicroRNA-30a increases tight junction protein expression to suppress the epithelial-mesenchymal transition and metastasis by targeting Slug in breast cancer. Oncotarget, 2016, 7(13): 16462-16478. |
[63] |
Wu Q, Yan H, Tao SQ, Wang XN, Mou L, Chen P, Cheng XW, Wu WY, Wu ZS. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget, 2017, 8(10): 16784-16800.
doi: 10.18632/oncotarget.15159 pmid: 28186968 |
[64] |
Yamakita Y, Ono S, Matsumura F, Yamashiro S. Phosphorylation of human fascin inhibits its actin binding and bundling activities. J Biol Chem, 1996, 271(21): 12632-12638.
doi: 10.1074/jbc.271.21.12632 pmid: 8647875 |
[65] | Ono S, Yamakita Y, Yamashiro S, Matsudaira PT, Gnarra JR, Obinata T, Matsumura F. Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. J iol hem, 1997, 272(4): 2527-2533. |
[66] |
Zeng FM, Wang XN, Shi HS, Xie JJ, Du ZP, Liao LD, Nie PJ, Xu LY, Li EM. Fascin phosphorylation sites combine to regulate esophageal squamous cancer cell behavior. Amino Acids, 2017, 49(5): 943-955.
doi: 10.1007/s00726-017-2398-1 pmid: 28251354 |
[67] |
Villari G, Jayo A, Zanet J, Fitch B, Serrels B, Frame M, Stramer BM, Goult BT, Parsons M. A direct interaction between fascin and microtubules contributes to adhesion dynamics and cell migration. J Cell Sci, 2015, 128(24): 4601-4614.
doi: 10.1242/jcs.175760 pmid: 26542021 |
[68] | Cheng YW, Zeng FM, Li DJ, Wang SH, He JZ, Guo ZC, Nie PJ, Wu ZY, Shi WQ, Wen B, Xu XE, Liao LD, Li ZM, Wu JY, Zhan J, Zhang HQ, Chang ZJ, Zhang K, Xu LY, Li EM. P300/CBP-associated factor (PCAF)-mediated acetylation of fascin at lysine 471 inhibits its actin-bundling activity and tumor metastasis in esophageal cancer. Cancer Commun (Lond), 2021, 41(12): 1398-1416. |
[69] |
Lin SC, Lu S, Mulaj M, Fang B, Keeley T, Wan LX, Hao JH, Muschol M, Sun JW, Yang SY. Monoubiquitination inhibits the actin bundling activity of fascin. J Biol Chem, 2016, 291(53): 27323-27333.
doi: 10.1074/jbc.M116.767640 pmid: 27879315 |
[70] | Gonzalez-Reyes C, Marcial-Medina C, Cervantes-Anaya N, Cortes-Reynosa P, Salazar EP. Migration and invasion induced by linoleic acid are mediated through fascin in MDA-MB-231 breast cancer cells. Mol Cell Biochem, 2018, 443(1-2): 1-10. |
[71] |
Heinz LS, Muhs S, Schiewek J, Grüb S, Nalaskowski M, Lin YN, Wikman H, Oliveira-Ferrer L, Lange T, Wellbrock J, Konietzny A, Mikhaylova M, Windhorst S. Strong fascin expression promotes metastasis independent of its F-actin bundling activity. Oncotarget, 2017, 8(66): 110077-110091.
doi: 10.18632/oncotarget.22249 |
[72] |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA, 2003, 100(7): 3983-3988.
doi: 10.1073/pnas.0530291100 pmid: 12629218 |
[73] | Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu SL, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell tem ell, 2007, 1(5): 555-567. |
[74] |
Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res, 2011, 13(3): 211.
doi: 10.1186/bcr2876 pmid: 21672282 |
[75] |
Zhao HY, Yang FQ, Zhao WY, Zhang CJ, Liu JG. Fascin overexpression promotes cholangiocarcinoma RBE Cell proliferation, migration, and invasion. Technol Cancer Res Treat, 2016, 15(2): 322-333.
doi: 10.1177/1533034615580696 |
[76] |
Liang ZG, Wang Y, Shen ZY, Teng XM, Li XJ, Li CW, Wu WJ, Zhou ZH, Wang ZS. Fascin 1 promoted the growth and migration of non-small cell lung cancer cells by activating YAP/TEAD signaling. Tumor Biol, 2016, 37(8): 10909-10915.
doi: 10.1007/s13277-016-4934-0 |
[77] |
Kang JX, Wang J, Yao Z, Hu YZ, Ma SJ, Fan Q, Gao F, Sun Y, Sun JW. Fascin induces melanoma tumorigenesis and stemness through regulating the Hippo pathway. Cell commun signal, 2018, 16(1): 37.
doi: 10.1186/s12964-018-0250-1 pmid: 29970086 |
[78] | Hayashi Y, Osanai M, Lee GH. Fascin-1 expression correlates with repression of E-cadherin expression in hepatocellular carcinoma cells and augments their invasiveness in combination with matrix metalloproteinases. Cancer ci, 2011, 102(6): 1228-1235. |
[79] |
Xu YF, Yu SN, Lu ZH, Liu JP, Chen J. Fascin promotes the motility and invasiveness of pancreatic cancer cells. World J Gastroenterol, 2011, 17(40): 4470-4478.
doi: 10.3748/wjg.v17.i40.4470 |
[80] |
Denkert C, Liedtke C, Tutt A, Von MG. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet, 2017, 389(10087): 2430-2442.
doi: S0140-6736(16)32454-0 pmid: 27939063 |
[81] | Lamb MC, Tootle TL. Fascin in cell migration: more than an actin bundling protein. Biology (Basel), 2020, 9(11): 403. |
[82] |
Tampaki EC, Tampakis A, Nonni A, Von Flüe M, Patsouris E, Kontzoglou K, Kouraklis G. Combined fascin-1 and MAP17 expression in breast cancer identifies patients with high risk for disease recurrence. Mol Diagn Ther, 2019, 23(5): 635-644.
doi: 10.1007/s40291-019-00411-3 pmid: 31273628 |
[83] |
Min KW, Kim DH, Do SI, Chae SW, Kim K, Sohn JH, Pyo JS, Lee HJ, Kim DH, Oh S, Choi SH, Park YL, Park CH, Kim EK, Kwon MJ, Seo J, Moon KM. Negative association between GATA3 and fascin could predict relapse-free and overall survival in patients with breast cancer. Virchows Arch, 2016, 468(4): 409-416.
doi: 10.1007/s00428-015-1894-5 |
[84] |
Youssef NS, Hakim SA. Association of fascin and matrix metalloproteinase-9 expression with poor prognostic parameters in breast carcinoma of Egyptian women. Diagn Pathol, 2014, 9: 136.
doi: 10.1186/1746-1596-9-136 pmid: 24993803 |
[85] |
Wang YF, Zhang JJ, Huang XY. Anti-metastasis fascin inhibitors decrease the growth of specific subtypes of cancers. Cancers (Basel), 2020, 12(8): 2287.
doi: 10.3390/cancers12082287 |
[86] | Lo RD, Zhou Y, Mucha J, Jones LF, Leahy L, Santocanale C, Krol M, Murphy PV. Synthesis of migrastatin analogues as inhibitors of tumour cell migration: exploring structural change in and on the aacrocyclic ring. Chemistry, 2015, 21(50): 18109-18121. |
[87] |
Riahi N, Kefayat A, Ghasemi A, Asgarshamsi M, Panjehpoor M, Fassihi A. Design, synthesis and molecular docking studies of some tetrahydropyrimidine derivatives as possible fascin inhibitors. Chem Biodivers, 2019, 16(2): e1800339.
doi: 10.1002/cbdv.201800339 |
[88] |
Zheng SL, Zhong Q, Xi YL, Mottamal M, Zhang Q, Schroeder RL, Sridhar J, He L, Mcferrin H, Wang GD. Modification and biological evaluation of thiazole derivatives as novel inhibitors of metastatic cancer cell migration and invasion. J Med Chem, 2014, 57(15): 6653-6667.
doi: 10.1021/jm500724x pmid: 25007006 |
[89] |
Dinicola S, Pasqualato A, Cucina A, Coluccia P, Ferranti F, Canipari R, Catizone A, Proietti S, D'anselmi F, Ricci G, Palombo A, Bizzarri M. Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion. Eur J Nutr, 2014, 53(2): 421-431.
doi: 10.1007/s00394-013-0542-6 pmid: 23754570 |
[90] |
Chen C, Xie BJ, Li ZQ, Chen LN, Chen YX, Zhou JC, Ju SW, Zhou YL, Zhang X, Zhuo WY, Yang JJ, Mao MS, Xu L, Wang LB. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis, 2022, 13(2): 150.
doi: 10.1038/s41419-022-04579-1 pmid: 35165254 |
[91] | Lin SC, Huang CB, Gunda V, Sun JW, Chellappan SP, Li ZX, Izumi V, Fang B, Koomen J, Singh PK, Hao JH, Yang SY. Fascin controls metastatic colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments. Cell ep, 2019, 28(11): 2824-2836.e8. |
[92] | Wu YP, Zhou Y, Gao HY, Wang YJ, Cheng QY, Jian SK, Ding Q, Gu W, Yao YX, Ma J, Wu WJ, Li YY, Tong XH, Song XY, Ma S. LYAR promotes colorectal cancer progression by upregulating FSCN1 expression and fatty acid metabolism. Oxid Med Cell Longev, 2021, 2021: 9979707. |
[93] | Li MH, Gao ZM, Ding HL, Wang ZH, Mu HD, Zhang L, Wei JF, Ma ZS. FSCN1 Promotes glycolysis and epithelial-mesenchymal transition in prostate cancer through a YAP/TAZ signaling pathway. Evid Based Complement Alternat Med, 2022, 2022: 6245647. |
[94] |
Lin SC, Li YZ, Wang DZ, Huang CB, Marino D, Bollt O, Wu CD, Taylor MD, Li W, Denicola GM, Hao JH, Singh PK, Yang SY. Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett, 2021, 518: 230-242.
doi: 10.1016/j.canlet.2021.07.025 pmid: 34303764 |
[95] |
Pocaterra A, Scattolin G, Romani P, Ament C, Ribback S, Chen X, Evert M, Calvisi DF, Dupont S. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol, 2021, 4(1): 763.
doi: 10.1038/s42003-021-02286-9 pmid: 34155338 |
[96] |
Lim B, Park JL, Kim HJ, Park YK, Kim JH, Sohn HA, Noh SM, Song KS, Kim WH, Kim YS, Kim SY. Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis, 2014, 35(5): 1020-1027.
doi: 10.1093/carcin/bgt409 pmid: 24325916 |
[97] | Lawson CD, Peel S, Jayo A, Corrigan A, Iyer P, Baxter Dalrymple M, Marsh RJ, Cox S, Van Audenhove I, Gettemans J, Parsons M. Nuclear fascin regulates cancer cell survival. eLife, 2022, 11. |
[1] | 严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[2] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[3] | 张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[4] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[5] | 禹奇超,宋彬,邹轩轩,王岭,刘德权,李波,马昆. 乳腺癌癌旁组织特异性表达基因分析[J]. 遗传, 2019, 41(7): 625-633. |
[6] | 余同露,蔡栋梁,朱根凤,叶晓娟,闵太善,陈红岩,卢大儒,陈浩明. CSN4基因干扰对乳腺癌MDA-MB-231细胞增殖和凋亡的影响[J]. 遗传, 2019, 41(4): 318-326. |
[7] | 程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[8] | 姚传波, 周鑫, 陈策实, 雷群英. Hippo信号通路在乳腺癌中的调控机制及作用[J]. 遗传, 2017, 39(7): 617-629. |
[9] | 李泰明, 蓝文俊, 黄灿, 张春, 刘晓玫. 近红外荧光蛋白标记乳腺癌细胞外泌体的构建及鉴定[J]. 遗传, 2016, 38(5): 427-435. |
[10] | 胡清霞,高昂,曾炜佳,王妍馨,董金堂,朱正茂. 高等哺乳动物LEM结构域蛋白家族的研究进展[J]. 遗传, 2015, 37(2): 128-139. |
[11] | 魏永永,侯静,唐文如,罗瑛. p53与Ras协同及其在肿瘤发生中的作用[J]. 遗传, 2012, 34(12): 1513-1521. |
[12] | 吴新刚,彭姝彬,黄谦. 乳腺癌耐药蛋白基因的转录调控机制[J]. 遗传, 2012, 34(12): 1529-1536. |
[13] | 程龙,黄翠芬,叶棋浓. 乳腺癌中雌激素受体α表达水平调节的分子机制[J]. 遗传, 2010, 32(3): 191-197. |
[14] | 张振武,安洋,滕春波. miR-17-92基因簇microRNAs对哺乳动物器官发育及肿瘤发生的调控[J]. 遗传, 2009, 31(11): 1094-1100. |
[15] | 王靖,李彦辉,郭政,朱晶,马文财,彭春方,刘庆. 根据蛋白质互作网络预测乳腺癌相关蛋白质的细致功能[J]. 遗传, 2007, 29(9): 1061-1066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: