遗传 ›› 2021, Vol. 43 ›› Issue (3): 226-239.doi: 10.16288/j.yczz.20-268
收稿日期:
2020-08-26
出版日期:
2021-03-16
发布日期:
2021-02-01
基金资助:
Zilong Wen1(), Yiqiang Zhao1()
Received:
2020-08-26
Online:
2021-03-16
Published:
2021-02-01
Supported by:
摘要:
动物驯化是将野生动物改变为能够长期稳定饲养的家养动物的过程。作为新石器时代农业革命的内容,驯化是人类社会文明进步的重要标志之一。由于和人类的密切关系,驯化不仅改变了动物的野生状态,也改变了人类的生活习性和文明进程。动物驯化研究的关键问题包含驯化祖先是谁、驯化所产生的改变及驯化时间地点等。随着高通量基因组技术和对应分析方法的发展,目前研究动物驯化一般基于群体水平,在群体遗传学的框架下研究动物驯化过程中的重要事件。本文总结了群体遗传学下动物驯化研究的相关内容,包括群体动态历史、选择信号、基因交流等,着重介绍了基因选择初始时间和基因交流时间两个新的拓展内容及分析方法,概述了家猪(Sus scrofa f. domestica)、家鸡(Gallus gallus domesticus)、绵羊(Ovis aries)和山羊(Caprine hircus)等几种主要农业动物近期驯化研究的进展,以期为动物驯化研究提供了新的方向和视角。
文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239.
Zilong Wen, Yiqiang Zhao. Progress on animal domestication under population genetics[J]. Hereditas(Beijing), 2021, 43(3): 226-239.
表1
基于LD估计交流时间工具汇总"
工具 | 交流模型 | 相关链接 | 参考文献 |
---|---|---|---|
ROLLOFF | HI (hybrid isolation) | | [76] |
ALDER | HI | | [77] |
MALDER | HI | | [77] |
CAMer | HI, GA (gradual admixture), CGF (continuous gene flow), GA-I (GA-Isolation), CGF-I (CGF-Isolation) | | [78] |
iMAAPs | HI, GA, CGF, GA-I, CGF-I | | [79] |
表2
基于单倍型/祖先区块大小分布估计交流时间工具汇总"
工具 | 交流模型 | 相关链接 | 参考文献 |
---|---|---|---|
StepPCO | HI | | [72] |
adwave | HI, Dual-admixture | | [71] |
HAPMIX | HI | | [74] |
MultiWaveInfer | HI, GA, CGF | | [80] |
GLOBETROTTER | HI, GA, CGF | | [81] |
tracts | HI, CGF | | [82] |
Ancestry_HMM | HI | | [83] |
[1] | PanZY, HeXY, WangXY, GuoXF, CaoXH, HuWP, DiR, LiuQY, ChuMX. Selection signature in domesticated animals. Hereditas(Beijing), 2016, 38(12): 1069- 1080. |
潘章源, 贺小云, 王翔宇, 郭晓飞, 曹晓涵, 胡文萍, 狄冉, 刘秋月, 储明星. 家养动物选择信号研究进展. 遗传, 2016, 38(12): 1069- 1080. | |
[2] | ZederMA. Core questions in domestication research. Proc Natl Acad Sci USA, 2015, 112(11): 3191- 3198. |
[3] | GambleC, DaviesW, PettittP, RichardsM. Climate change and evolving human diversity in Europe during the Last Glacial. Philos Trans R Soc Lond B Biol Sci, 2004, 359( 1442): 243- 254. |
[4] | FabriceT. Animal domestication: A brief overview. London: IntechOpen. 2019. |
[5] | ZederMA. The domestication of animals. J Anthropol Res, 1982,9(4):321- 327. |
[6] | LarsonG, PipernoDR, AllabyRG, PuruggananMD, AnderssonL, Arroyo-KalinM, BartonL, ClimerVigueira C, DenhamT, DobneyK, DoustAN, GeptsP, GilbertMTP, GremillionKJ, LucasL, LukensL, MarshallFB, OlsenKM, PiresJC, RichersonPJ, deCasas RR, SanjurOI, ThomasMG, FullerDQ. Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA, 2014, 111(17): 6139- 6146. |
[7] | LiJ, ZhangYP. Advances in research of the origin and domestication of domestic animals. Biodiv Sci, 2009, 17(4): 1- 11. |
李晶, 张亚平. 家养动物的起源与驯化研究进展. 生物多样性, 2009, 17(4): 1- 11. | |
[8] | DiamondJ. Evolution, consequences and future of plant and animal domestication. Nature, 2002,418(6898):700- 707. |
[9] | EvershedRP, PayneS, SherrattAG, CopleyMS, CoolidgeJ, Urem-KotsuD, KotsakisK, OzdoğanM, OzdoğanAE, NieuwenhuyseO, AkkermansPMMG, BaileyD, AndeescuRR, CampbellS, FaridS, HodderI, YalmanN, OzbaşaranM, BiçakciE, GarfinkelY, LevyT, BurtonMM. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 2008, 455(7212): 528- 531. |
[10] | OutramAK, StearNA, BendreyR, OlsenS, KasparovA, ZaibertV, ThorpeN, EvershedRP. The earliest horse harnessing and milking. Science, 2009,323(5919):1332- 1335. |
[11] | DanielLH, AndrewGC. Principles of population genetics. 4th ed. Sinauer Associates, Sunderland, MA, 2006. |
[12] | ShiY, LiHP. Population genomics: from classical statistics to supervised learning. Sci Sin Vitae, 2019, 49(4): 445- 455. |
施怿, 李海鹏. 群体基因组学方法:从经典统计学到有监督学习. 中国科学: 生命科学, 2019, 49(4): 445- 455. | |
[13] | ZhengZQ. Population structure and genetic introgression from wild relatives in worldwide goat populations [Dissertation]. Northwest A&F University, 2019. |
郑竹清. 世界山羊群体遗传结构及其野生近缘种基因渗入研究[学位论文]. 西北农林科技大学, 2019. | |
[14] | WangGD, ZhaiWW, YangHC, WangL, ZhongL, LiuYH, FanRX, YinTT, ZhuCL, PoyarkovAD, IrwinDM, HytönenMK, LohiH, WuCI, SavolainenP, ZhangYP. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res, 2016, 26(1): 21- 33. |
[15] | PetersJ, LebrasseurO, DengH, LarsonG. Holocene cultural history of Red jungle fowl ( Gallus gallus ) and its domestic descendant in East Asia . Quaternary Sci Rev, 2016,142:102- 119. |
[16] | WangMS, ThakurM, PengMS, JiangY, FrantzLAF, LiM, ZhangJJ, WangS, PetersJ, OteckoNO, SuwannapoomC, GuoX, ZhengZQ, EsmailizadehA, HirimuthugodaNY, AshariH, SuladariS, ZeinMSA, KuszaS, SohrabiS, Kharrati-KoopaeeH, ShenQK, ZengL, YangMM, WuYJ, YangXY, LuXM, JiaXZ, NieQH, LamontSJ, LasagnaE, CeccobelliS, GunwardanaHGTN, SenasigeTM, FengSH, SiJF, ZhangH, JinJQ, LiML, LiuYH, ChenHM, MaC, DaiSS, BhuiyanAKFH, KhanMS, SilvaGLLP, LeTT, MwaiOA, IbrahimMNM, SuppleM, ShapiroB, HanotteO, ZhangGJ, LarsonG, HanJL, WuDD, ZhangYP. 863 genomes reveal the origin and domestication of chicken. Cell Res, 2020, 30(8):693- 701. |
[17] | GaoF, LiHP. Application of computer simulators in population genetics. Hereditas(Beijing), 2016, 38(8): 707- 717. |
高峰, 李海鹏. 群体遗传学模拟软件应用现状. 遗传, 2016, 38(8): 707- 717. | |
[18] | LiH, DurbinR. Inference of human population history from individual whole-genome sequences. Nature, 2011, 475(7357): 493- 496. |
[19] | SchiffelsS, DurbinR. Inferring human population size and separation history from multiple genome sequences. Nat Genet, 2014,46(8):919- 925. |
[20] | TerhorstJ, KammJA, SongYS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet, 2017, 49(2): 303- 309. |
[21] | QanbariS, StromTM, HabererG, WeigendS, GheyasAA, TurnerF, BurtDW, PreisingerR, GianolaD, SimianerH. A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens. PLoS One, 2012, 7( 11): e49525. |
[22] | LiHP, StephanW. Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet, 2006, 2( 10): e166. |
[23] | WakeleyJ, HeyJ. Estimating ancestral population parameters. Genetics, 1997,145(3):847- 855. |
[24] | GutenkunstRN, HernandezRD, WilliamsonSH, BustamanteCD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet, 2009, 5( 10): e1000695. |
[25] | ExcoffierL, DupanloupI, Huerta-SánchezE, SousaVC, FollM. Robust demographic inference from genomic and SNP data. PLoS Genet, 2013, 9( 10): e1003905. |
[26] | BarbatoM, Orozco-terWengelP, TapioM, BrufordMW. Snep: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet, 2015,6:109. |
[27] | WangJL. Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc Lond B Biol Sci, 2005,360( 1459):1395- 1409. |
[28] | HillWG. Estimation of effective population size from data on linkage disequilibrium. Genet Res, 1981,38(3):209- 216. |
[29] | CorbinLJ, LiuAYH, BishopSC, WoolliamsJA. Estimation of historical effective population size using linkage disequilibria with marker data. J Anim Breed Genet, 2012,129(4):257- 270. |
[30] | SunnåkerM, BusettoAG, NumminenE, CoranderJ, FollM, DessimozC. Approximate Bayesian computation. PLoS Comput Biol, 2013, 9( 1): e1002803. |
[31] | WegmannD, LeuenbergerC, NeuenschwanderS, ExcoffierL. Abctoolbox: A versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 2010,11(116). |
[32] | SanchezT, CuryJ, CharpiatG, JayF. Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation. Mol Ecol Resour, 2020. |
[33] | Tiago Do Prado Paim, PatríciaI, SamuelRP, AlexandreRC, Concepta Margaret Mcmanus Pimentel. Detection and evaluation of selection signatures in sheep. Pesqui Agropecu Bras, 2018,53(5):527- 539. |
[34] | XueZYY, SongXW, WuLH, WangLZ, CuiJA, SunZJ, ZhangZ, MaYL. The identification methods of selection signatures in livestock and its statistical problems. Acta Vet Et Zootech Sin, 2018, 49(6): 1099- 1107. |
薛周舣源, 宋显威, 吴林慧, 王露珍, 崔家安, 孙章健, 张政, 马云龙. 畜禽选择信号检测方法及其统计学问题. 畜牧兽医学报, 2018, 49(6): 1099- 1107. | |
[35] | EisenhaberF. Discovering biomolecular mechanisms with computational biology. Springer, Boston, MA, 2006. |
[36] | PenningsPS, HermissonJ. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol, 2006,23(5):1076- 1084. |
[37] | HermissonJ, PenningsPS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics, 2005,169(4):2335- 2352. |
[38] | SuzukiY. Statistical methods for detecting natural selection from genomic data. Genes Genet Syst, 2010,85(6):359- 376. |
[39] | NielsenR. Molecular signatures of natural selection. Annu Rev Genet, 2005,39:197- 218. |
[40] | LohmuellerKE, BustamanteCD, ClarkAG. Detecting directional selection in the presence of recent admixture in African-Americans. Genetics, 2011,187(3):823- 835. |
[41] | WangYZ, ZhaoYQ. Research progress of genomic signature of selection and its detection methods. Acta Ecol Anim Domas, 2019, 40(5): 1- 6. |
王宇占, 赵毅强. 基因组水平的选择信号及其检测方法研究进展. 家畜生态学报, 2019, 40(5): 1- 6. | |
[42] | de Simoni Gouveia JJ, daSilva MVGB, PaivaSR, de Oliveira SMP. Identification of selection signatures in livestock species. Genet Mol Biol, 2014, 37(2): 330- 342. |
[43] | ChenH, PattersonN, ReichD. Population differentiation as a test for selective sweeps. Genome Res, 2010,20(3):393- 402. |
[44] | OleksykTK, SmithMW, O'BrienSJ. Genome-wide scans for footprints of natural selection. Philos Trans R Soc Lond B Biol Sci, 2010, 365( 1537): 185- 205. |
[45] | GrossmanSR, ShlyakhterI, KarlssonEK, ByrneEH, MoralesS, FriedenG, HostetterE, AngelinoE, GarberM, ZukO, LanderES, SchaffnerSF, SabetiPC. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science, 2010, 327(5967): 883- 886. |
[46] | UtsunomiyaYT, PérezO'Brien AM, SonstegardTS, VanTassell CP, doCarmo AS, MészárosG, SölknerJ, GarciaJF. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome- wide scan methods. PLoS One, 2013,8(5): e64280. |
[47] | RandhawaIAS, KhatkarMS, ThomsonPC, RaadsmaHW. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep. BMC Genet, 2014,15:34. |
[48] | MaY, DingX, QanbariS, WeigendS, ZhangQ, SimianerH. Properties of different selection signature statistics and a new strategy for combining them. Heredity(Edinb), 2015,115(5):426- 436. |
[49] | BiswasS, AkeyJM. Genomic insights into positive selection. Trends Genet, 2006,22(8):437- 446. |
[50] | SchriderDR, KernAD. Supervised machine learning for population genetics: a new paradigm. Trends Genet, 2018,34(4):301- 312. |
[51] | KotsiantisSB. Supervised machine learning: a review of classification techniques. Informatica (lith Acad Sci), 2007, 31: 3- 24. |
[52] | LinK, LiHP, SchlöttererC, FutschikA. Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics, 2011, 187(1): 229- 244. |
[53] | LiangZX. Analysis of pig domestication and ancestry using genomewide SNP information[Dissertation]. China Agricultural University, 2019. |
梁作翔. 利用全基因组SNP信息研究家猪的驯化及祖先来源[学位论文]. 中国农业大学, 2019. | |
[54] | MalaspinasAS, MalaspinasO, EvansSN, SlatkinM. Estimating allele age and selection coefficient from time-serial data. Genetics, 2012, 192(2): 599- 607. |
[55] | PrzeworskiM. Estimating the time since the fixation of a beneficial allele. Genetics, 2003,164(4):1667- 1676. |
[56] | LaurentS, PfeiferSP, SettlesML, HunterSS, HardwickKM, OrmondL, SousaVC, JensenJD, RosenblumEB. The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards. Mol Ecol, 2016, 25(1): 306- 323. |
[57] | MedinaP, ThornlowB, NielsenR, Corbett-DetigR. Estimating the timing of multiple admixture pulses during local ancestry inference. Genetics, 2018,210(3):1089- 1107. |
[58] | ChengCH, HuangY. Construction and application of phylogenetic network. Entomotaxonomia, 2008, 30(3): 215- 221. |
程春花, 黄原. 系统发育网络的构建与应用. 昆虫分类学报, 2008, 30(3): 215- 221. | |
[59] | DobneyK, LarsonG. Genetics and animal domestication: New windows on an elusive process. J Zool, 2006, 269(2): 261- 271. |
[60] | MarshallFB, DobneyK, DenhamT, CaprilesJM. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc Natl Acad Sci USA, 2014, 111(17): 6153- 6158. |
[61] | WinklerCA, NelsonGW, SmithMW. Smith. Admixture mapping comes of age. Annu Rev Genomics Hum Genet, 2010,11:65- 89. |
[62] | RacimoF, SankararamanS, NielsenR, Huerta-SánchezE. Evidence for archaic adaptive introgression in humans. Nat Rev Genet, 2015,16(6):359- 371. |
[63] | AiHS, FangXD, YangB, HuangZY, ChenH, MaoLK, ZhangF, ZhangL, CuiLL, HeWM, YangJ, YaoXM, ZhouLS, HanLJ, LiJ, SunSL, XieXH, LaiBX, SuY, LuY, YangH, HuangT, DengWJ, NielsenR, RenJ, HuangLS. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet, 2015,47(3):217- 225. |
[64] | LiangSY, ZhouZK, HouSS. The research progress of farm animal genomics based on sequencing technologies. Hereditas(Beijing), 2017, 39(4): 276- 292. |
梁素芸, 周正奎, 侯水生. 基于测序技术的畜禽基因组学研究进展. 遗传, 2017, 39(4): 276- 292. | |
[65] | PattersonN, MoorjaniP, LuoY, MallickS, RohlandN, ZhanYP, GenschoreckT, WebsterT, ReichD. Ancient admixture in human history. Genetics, 2012,192(3):1065- 1093. |
[66] | ReichD, ThangarajK, PattersonN, PriceAL, SinghL. Reconstructing Indian population history. Nature, 2009,461(7263):489- 494. |
[67] | GreenRE, KrauseJ, BriggsAW, MaricicT, StenzelU, KircherM, PattersonN, LiH, ZhaiWW, FritzMHY, HansenNF, DurandEY, MalaspinasAS, JensenJD, Marques-BonetT, AlkanC, PrüferK, MeyerM, BurbanoHA, GoodJM, SchultzR, Aximu-PetriA, ButthofA, HöberB, HöffnerB, SiegemundM, WeihmannA, NusbaumC, LanderES, RussC, NovodN, AffourtitJ, EgholmM, VernaC, RudanP, BrajkovicD, KucanŽ, GušicI, DoronichevVB, GolovanovaLV, Lalueza-FoxC, dela Rasilla M, ForteaJ, RosasA, SchmitzRW, JohnsonPLF, EichlerEE, FalushD, BirneyE, MullikinJC, SlatkinM, NielsenR, KelsoJ, LachmannM, ReichD, PääboS. A draft sequence of the Neandertal genome. Science, 2010,328(5979):710- 722. |
[68] | PeaseJB, HahnMW. Detection and polarization of introgression in a five-taxon phylogeny. Syst Biol, 2015,64(4):651- 662. |
[69] | ZhengYC, JankeA. Gene flow analysis method, the D -statistic, is robust in a wide parameter space . BMC Bioinformatics, 2018, 19( 1): 10. |
[70] | FrantzLAF, SchraiberJG, MadsenO, MegensHJ, BosseM, PaudelY, SemiadiG, MeijaardE, LiN, CrooijmansRPMA, ArchibaldAL, SlatkinM, SchookLB, LarsonG, GroenenMAM. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol, 2013,14(9): R107. |
[71] | SandersonJ, SudoyoH, KarafetTM, HammerMF, CoxMP. Reconstructing past admixture processes from local genomic ancestry using wavelet transformation. Genetics, 2015, 200(2): 469- 481. |
[72] | PugachI, MatveyevR, WollsteinA, KayserM, StonekingM. Dating the age of admixture via wavelet transform analysis of genome-wide data . Genome Biol, 2011, 12( 2): R19. |
[73] | XuSH, HuangW, QianJ, JinL. Analysis of genomic admixture in Uyghur and its implication in mapping strategy. Am J Hum Genet, 2008,82(4):883- 894. |
[74] | PriceAL, TandonA, PattersonN, BarnesKC, RafaelsN, RuczinskiI, BeatyTH, MathiasR, ReichD, MyersS. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet, 2009,5(6): e1000519. |
[75] | ChimusaER, DefoJ, ThamiPK, AwanyD, MulisaDD, AllaliI, GhazalH, MoussaA, MazanduGK. Dating admixture events is unsolved problem in multi-way admixed populations. Brief Bioinform, 2020, 21(2): 144- 155. |
[76] | MoorjaniP, PattersonN, HirschhornJN, KeinanA, HaoL, AtzmonG, BurnsE, OstrerH, PriceAL, ReichD. The history of African gene flow into Southern Europeans, Levantines, and Jews. PLoS Genet, 2011,7(4): e1001373. |
[77] | LohPR, LipsonM, PattersonN, MoorjaniP, PickrellJK, ReichD, BergerB. Inferring admixture histories of human populations using linkage disequilibrium. Genetics, 2013,193(4):1233- 1254. |
[78] | ZhouY, QiuHX, XuSH. Modeling continuous admixture using admixture-induced linkage disequilibrium. Sci Rep, 2017,7:43054. |
[79] | ZhouY, YuanK, YuY, NiX, XieP, XingEP, XuS. Inference of multiple-wave population admixture by modeling decay of linkage disequilibrium with polynomial functions. Heredity (Edinb), 2017,118(5):503- 510. |
[80] | NiXM, YuanK, YangX, FengQD, GuoW, MaZM, XuSH. Inference of multiple-wave admixtures by length distribution of ancestral tracks. Heredity (Edinb), 2018, 121(1): 52- 63. |
[81] | HellenthalG, BusbyGBJ, BandG, WilsonJF, CapelliC, FalushD, MyersS. A genetic atlas of human admixture history. Science, 2014, 343(6172): 747- 751. |
[82] | NiXM, YangX, GuoW, YuanK, ZhouY, MaZM, XuSH. Length distribution of ancestral tracks under a general admixture model and its applications in population history inference. Sci Rep, 2016,6:20048. |
[83] | Corbett-DetigR, NielsenR. A hidden Markov model approach for simultaneously estimating local ancestry and admixture time using next generation sequence data in samples of arbitrary ploidy. PLoS Genet, 2017, 13( 1): e1006529. |
[84] | LawsonDJ, HellenthalG, MyersS, FalushD. Inference of population structure using dense haplotype data. PLoS Genet, 2012, 8( 1): e1002453. |
[85] | GalaverniM, CanigliaR, PaganiL, FabbriE, BoattiniA, RandiE. Disentangling timing of admixture, patterns of introgression, and phenotypic indicators in a hybridizing wolf population. Mol Biol Evol, 2017,34(9):2324- 2339. |
[86] | ZhuYL, LiWB, YangB, ZhangZY, AiHS, RenJ, HuangLS. Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs. Genome Biol Evol, 2017, 9(10): 2592- 2603. |
[87] | ChenH, HuangM, YangB, WuZP, DengZ, HouY, RenJ, HuangLS. Introgression of Eastern Chinese and Southern Chinese haplotypes contributes to the improvement of fertility and immunity in European modern pigs. Gigascience, 2020,9(3): giaa014. |
[88] | RubinCJ, ZodyMC, ErikssonJ, MeadowsJRS, SherwoodE, WebsterMT, JiangL, IngmanM, SharpeT, KaS, HallböökF, BesnierF, CarlborgO, Bed'homB, Tixier-BoichardM, JensenP, SiegelP, Lindblad-TohK, AnderssonL. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 2010,464(7288):587- 591. |
[89] | LiDY, LiY, LiM, CheTD, TianSL, ChenBL, ZhouXM, ZhangGL, GaurU, LuoMJ, TianK, HeMN, HeS, XuZX, JinL, TangQZ, DaiYF, XuHL, HuYD, ZhaoXL, YinHD, WangY, ZhouRJ, YangCW, DuHR, JiangXS, ZhuQ, LiMZ. Population genomics identifies patterns of genetic diversity and selection in chicken. BMC Genomics, 2019, 20( 1): 263. |
[90] | ZhangCY, LinD, WangYZ, PengDZ, LiHF, FeiJ, ChenKW, YangN, HuXX, ZhaoYQ, LiN. Widespread introgression in Chinese indigenous chicken breeds from commercial broiler. Evol Appl, 2019,12(3):610- 621. |
[91] | ZederMA, HesseB. The initial domestication of goats ( Capra hircus ) in the Zagros Mountains 10, 000 years ago. Science, 2000, 287(5461): 2254- 2257. |
[92] | WangFH, ZhangL, LiXK, FanYX, QiaoX, GongG, YanXC, ZhangLT, WangZY, WangRJ, LiuZH, WangZX, HeLB, ZhangYJ, LiJQ, ZhaoYH, SuR. Progress in goat genome studies. Hereditas(Beijing), 2019, 41(10): 928- 938. |
王凤红, 张磊, 李晓凯, 范一星, 乔贤, 龚高, 严晓春, 张令天, 王志英, 王瑞军, 刘志红, 王志新, 何利兵, 张燕军, 李金泉, 赵艳红, 苏蕊. 山羊基因组研究进展. 遗传, 2019, 41(10): 928- 938. | |
[93] | LiXK, WangG, QiaoX, FanY, ZhangL, MaYH, NieRX, WangRJ, HeLB, SuR. Research progress on whole-genome sequencing on important domesticated animals. Biotechnol Bull, 2018, 34(6): 11- 21. |
李晓凯, 王贵, 乔贤, 范一星, 张磊, 马宇浩, 聂瑞雪, 王瑞军, 何利兵, 苏蕊. 全基因组测序在重要家畜上的研究进展. 生物技术通报, 2018, 34(6): 11- 21. | |
[94] | CaoYH, XuSS, ShenM, ChenZH, GaoL, LvFH, XieXL, WangXH, YangH, LiuCB, ZhouP, WanPC, ZhangYS, YangJQ, PiWH, EerH, BerryDP, BarbatoM, EsmailizadehA, NosratiM, Salehian-DehkordiH, Dehghani-QanatqestaniM, DotsevAV, DeniskovaTE, ZinovievaNA, BremG, ŠtěpánekO, CianiE, WeimannC, ErhardtG, MwacharoJM, AhbaraA, HanJL, HanotteO, MillerJM, SimZ, ColtmanD, KantanenJ, BrufordMW, LenstraJA, KijasJ, LiMH. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Mol Biol Evol, 2020,17:msaa236. |
[95] | ZhengZQ, WangXH, LiM, LiYJ, YangZR, WangXL, PanXY, GongM, ZhangY, GuoYW, WangY, LiuJ, CaiYD, ChenQM, OkpekuM, ColliL, CaiDW, WangK, HuangSS, SonstegardTS, EsmailizadehA, ZhangWG, ZhangTT, XuYB, XuNY, YangY, HanJL, ChenL, LesurJ, DalyKG, BradleyDG, HellerR, ZhangGJ, WangW, ChenYL, JiangY. The origin of domestication genes in goats. Sci Adv, 2020, 6( 21): eaaz5216. |
[96] | TerhorstJ, KammJA, SongYS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet, 2017, 49(2): 303- 309. |
[97] | OrmondL, FollM, EwingGB, PfeiferSP, JensenJD. Inferring the age of a fixed beneficial allele. Mol Ecol, 2016, 25(1): 157- 169. |
[98] | FrantzLA, SchraiberJG, MadsenO, MegensHJ, CaganA, BosseM, PaudelY, CrooijmansRPMA, LarsonG, GroenenMAM. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet, 2015, 47(10): 1141- 1148. |
[99] | FreudenthalJA, AnkenbrandMJ, GrimmDG, KorteA. GWAS-Flow: A GPU accelerated framework for efficient permutation based genome-wide association studies. BioRxiv, 2019,1:783100. |
[100] | BuLN, WangQ, GuWJ, YangRF, ZhuD, SongZ, LiuXJ, ZhaoYQ. Improving read alignment through the generation of alternative reference via iterative strategy . Sci Rep, 2020, 10( 1): 18712. |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
[3] | 简六梅, 肖英杰, 严建兵. 从头驯化:作物品种设计与培育的新方向[J]. 遗传, 2023, 45(9): 741-753. |
[4] | 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展[J]. 遗传, 2023, 45(9): 793-800. |
[5] | 王飞, 王萌, 张兴华, 宇克莉, 郑连斌, 杨亚军. 中国西南地区3个隔离人群遗传亚结构分析[J]. 遗传, 2022, 44(5): 424-431. |
[6] | 付孟, 李艳. 家马的起源历史与品种驯化特征[J]. 遗传, 2022, 44(3): 216-229. |
[7] | 王小娟, 钱恩芳, 李悦, 宋正阳, 赵慧, 谢何鑫, 李彩霞, 黄江, 江丽. 中国西南地区藏族人群遗传亚结构研究[J]. 遗传, 2020, 42(6): 565-576. |
[8] | 杨新萍,于媛,许操. 重新设计与快速驯化创造新型作物[J]. 遗传, 2019, 41(9): 827-835. |
[9] | 周萌,景军红,毛瑞涵,郭静,王志鹏. 代谢组学在家养动物遗传育种中的应用[J]. 遗传, 2019, 41(2): 111-124. |
[10] | 林春,刘正杰,董玉梅,MichelVales,毛自朝. 藜麦的驯化栽培与遗传育种[J]. 遗传, 2019, 41(11): 1009-1022. |
[11] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[12] | 胡健,周逸人,丁佳琳,王志远,刘凌,王业开,娄慧玲,乔守怡,吴燕华. ABO血型综合实验基因分型技术简化及其群体遗传分析拓展[J]. 遗传, 2017, 39(5): 423-429. |
[13] | 高峰, 李海鹏. 群体遗传学模拟软件应用现状[J]. 遗传, 2016, 38(8): 707-717. |
[14] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[15] | 潘章源, 贺小云, 王翔宇, 郭晓飞, 曹晓涵, 胡文萍, 狄冉, 刘秋月, 储明星. 家养动物选择信号研究进展[J]. 遗传, 2016, 38(12): 1069-1080. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: