遗传 ›› 2016, Vol. 38 ›› Issue (8): 707-717.doi: 10.16288/j.yczz.16-100
高峰1, 2, 李海鹏1
收稿日期:
2016-03-22
修回日期:
2016-04-25
出版日期:
2016-08-20
发布日期:
2016-07-23
通讯作者:
李海鹏,博士,研究员,研究方向:理论群体遗传学。E-mail: lihaipeng@picb.ac.cn
E-mail:gaofeng@picb.ac.cn
作者简介:
高峰,博士,专业方向:生物信息学。E-mail: gaofeng@picb.ac.cn
基金资助:
Feng Gao1, 2, Haipeng Li1
Received:
2016-03-22
Revised:
2016-04-25
Online:
2016-08-20
Published:
2016-07-23
Supported by:
摘要: 随着下一代测序技术的不断进步与测序价格的不断下降,越来越多物种的全基因组信息被公开。作为研究群体遗传变异模式工具之一的模拟软件必然将发挥越来越重要的作用。依据时间推演方向的不同,模拟软件可以分为依时间向前和向后推演,二者各有所长,功能上互相补充,分别适合于不同的模拟需求。这些软件在研究进化动力的影响、估计进化动力参数与验证不同进化假设以及新方法有效性等方面起着重要作用。本文简要介绍了群体遗传学相关理论知识,详细比较了近10年来发表的32款模拟软件,并对模拟软件的未来发展方向给出了建议。
高峰, 李海鹏. 群体遗传学模拟软件应用现状[J]. 遗传, 2016, 38(8): 707-717.
Feng Gao, Haipeng Li. Application of computer simulators in population genetics[J]. Hereditas(Beijing), 2016, 38(8): 707-717.
[1] Hartl DL, Clark AG. Principles of population genetics. 4th ed. Sunderland, Mass: Sinauer Associates, 2007. [2] Messer PW. SLiM: simulating evolution with selection and linkage. Genetics , 2013, 194(4): 1037-1039. [3] Kessner D, Novembre J. Forqs: forward-in-time simulation of recombination, quantitative traits and selection. Bioinformatics , 2014, 30(4): 576-577. [4] Shlyakhter I, Sabeti PC, Schaffner SF. Cosi2 : an efficient simulator of exact and approximate coalescent with selection. Bioinformatics , 2014, 30(23): 3427-3429. [5] Servedio MR. The evolution of premating isolation: local adaptation and natural and sexual selection against hybrids. Evolution , 2004, 58(5): 913-924. [6] Daleszczyk K, Bunevich AN. Population viability analysis of European bison populations in Polish and Belarusian parts of Białowieża Forest with and without gene exchange. Biol Conserv , 2009, 142(12): 3068-3075. [7] Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos- Filho PS, Billen J, Wenseleers T. Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet , 2011, 12(3): 647-658. [8] Fu YX, Li WH. Estimating the age of the common ancestor of a sample of DNA sequences. Mol Biol Evol , 1997, 14(2): 195-199. [9] Li HP, Stephan W. Inferring the demographic history and rate of adaptive substitution in Drosophila . PLoS Genet , 2006, 2(10): e166. [10] Beaumont MA, Zhang WY, Balding DJ. Approximate Bayesian computation in population genetics. Genetics , 2002, 162(4): 2025-2035. [11] Li HP. A new test for detecting recent positive selection that is free from the confounding impacts of demography. Mol Biol Evol , 2011, 28(1): 365-375. [12] Lin K, Futschik A, Li HP. A fast estimate for the population recombination rate based on regression. Genetics , 2013, 194(2): 473-484. [13] Gao F, Ming C, Hu WJ, Li HP. New software for the fast estimation of population recombination rates (FastEPRR) in the genomic era. G3 ( Bethesda ), 2016, 6(6): 1563-1571. [14] Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One , 2008, 3(10): e3395. [15] Huang YZ. The application of computer simulation in teaching population genetics. Hereditas (Beijing) , 1998, 20(4): 26-27. 黄远樟. 计算机模拟在群体遗传教学中的应用. 遗传, 1998, 20(4): 26-27. [16] Gao J, Pan SY, Cao J. Design and application of computer- assisted software for teaching and research of population genetics. Hereditas (Beijing) , 2008, 30(5): 642-648. 高婧, 潘沈元, 曹静. 群体遗传学教学与研究辅助软件的设计与应用. 遗传, 2008, 30(5): 642-648. [17] Sved JA. Genetics computer teaching simulation programs: promise and problems. Genetics , 2010, 185(4): 1537-1540. [18] Vähä JP, Primmer CR. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol , 2006, 15(1): 63-72. [19] Ryman N, Palm S. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes , 2006, 6(3): 600-602. [20] Peng B, Amos CI. Forward-time simulation of realistic samples for genome-wide association studies. BMC Bioinformatics , 2010, 11: 442. [21] Vonholdt BM, Stahler DR, Smith DW, Earl DA, Pollinger JP, Wayne RK. The genealogy and genetic viability of reintroduced Yellowstone grey wolves. Mol Ecol , 2008, 17(1): 252-274. [22] Peng B, Kimmel M. Simulations provide support for the common disease-common variant hypothesis. Genetics , 2007, 175(2): 763-776. [23] Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol , 2010, 8(1): e1000294. [24] Carvajal-Rodríguez A. Simulation of genomes: a review. Curr Genomics , 2008, 9(3): 155-159. [25] Carvajal-Rodríguez A. Simulation of genes and genomes forward in time. Curr Genomics , 2010, 11(1): 58-61. [26] Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for population and evolutionary genetics. Nat Rev Genet , 2012, 13(2): 110-122. [27] Yuan XG, Miller DJ, Zhang JY, Herrington D, Wang Y. An overview of population genetic data simulation. J Comput Biol , 2012, 19(1): 42-54. [28] Kimura M. Evolutionary rate at the molecular level. Nature , 1968, 217(5129): 624-626. [29] Ewens WJ. Mathematical population genetics. Berlin: Springer, 1979. [30] Kingman JFC. The coalescent. Stoch Proc Appl , 1982, 13(3): 235-248. [31] Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics , 1969, 61(4): 893-903. [32] Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics , 1985, 111(1): 147-164. [33] Krone SM, Neuhauser C. Ancestral processes with selection. Theor Popul Biol , 1997, 51(3): 210-237. [34] Fu YX, Li WH. Coalescing into the 21st century: an overview and prospects of coalescent theory. Theor Popul Biol , 1999, 56(1): 1-10. [35] Wiuf C, Hein J. The coalescent with gene conversion. Genetics , 2000, 155(1): 451-462. [36] Zöllner S, Pritchard JK. Coalescent-based association mapping and fine mapping of complex trait loci. Genetics , 2005, 169(2): 1071-1092. [37] Balloux F. EASYPOP (version 1.7): a computer program for population genetics simulations. J Hered , 2001, 92(3): 301-302. [38] Wright S. Isolation by distance. Genetics , 1943, 28(2): 114-138. [39] Strand AE. METASIM 1.0: an individual-based environment for simulating population genetics of complex population dynamics. Mol Ecol Notes , 2002, 2(3): 373-376. [40] Peng B, Kimmel M. simuPOP: a forward-time population genetics simulation environment. Bioinformatics , 2005, 21(18): 3686-3687. [41] Peng B, Amos CI. Forward-time simulations of non-random mating populations using simuPOP. Bioinformatics , 2008, 24(11): 1408-1409. [42] Peng B, Amos CI, Kimmel M. Forward-time simulations of human populations with complex diseases. PLoS Genet , 2007, 3(3): e47. [43] Chadeau-Hyam M, Hoggart CJ, O'Reilly PF, Whittaker JC, De Iorio M, Balding DJ. Fregene: simulation of realistic sequence-level data in populations and ascertained samples. BMC Bioinformatics , 2008, 9: 364. [44] Kim Y, Wiehe T. Simulation of DNA sequence evolution under models of recent directional selection. Brief Bioinform , 2009, 10(1): 84-96. [45] Guillaume F, Rougemont J. Nemo: an evolutionary and population genetics programming framework. Bioinformatics , 2006, 22(20): 2556-2557. [46] Neuenschwander S, Hospital F, Guillaume F, Goudet J. quantiNemo: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics , 2008, 24(13): 1552-1553. [47] Lambert BW, Terwilliger JD, Weiss KM. ForSim : a tool for exploring the genetic architecture of complex traits with controlled truth. Bioinformatics , 2008, 24(16): 1821- 1822. [48] Edwards TL, Bush WS, Turner SD, Dudek SM, Torstenson ES, Schmidt M, Martin E, Ritchie MD. Generating linkage disequilibrium patterns in data simulations using genomeSIMLA. In: Marchiori E, Moore J H, eds. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin Heidelberg: Springer, 2008, 4973: 24-35. [49] Hernandez RD. A flexible forward simulator for populations subject to selection and demography. Bioinformatics , 2008, 24(23): 2786-2787. [50] Carvajal-Rodríguez A. GENOMEPOP: A program to simulate genomes in populations. BMC Bioinformatics , 2008, 9: 223. [51] Padhukasahasram B, Marjoram P, Wall JD, Bustamante CD, Nordborg M. Exploring population genetic models with recombination using efficient forward-time simulations. Genetics , 2008, 178(4): 2417-2427. [52] Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet , 2007, 8(8): 610-618. [53] Aberer AJ, Stamatakis A. Rapid forward-in-time simulation at the chromosome and genome level. BMC Bioinformatics , 2013, 14: 216. [54] Sanford J, Baumgardner J, Brewer W, Gibson P, Remine W. Mendel's Accountant: a biologically realistic forward- time population genetics program. SCPE , 2007, 8(2): 147-165. [55] Coombs JA, Letcher BH, Nislow KH. Pedagog: software for simulating eco-evolutionary population dynamics. Mol Ecol Resour , 2010, 10(3): 558-563. [56] Carroll C, Fredrickson RJ, Lacy RC. Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf. Conserv Biol , 2014, 28(1): 76-86. [57] Laval G, Excoffier L. SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics , 2004, 20(15): 2485-2487. [58] Excoffier L, Foll M. Fastsimcoal: a continuous- time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics , 2011, 27(9): 1332-1334. [59] Yang T, Deng HW, Niu TH. Critical assessment of coalescent simulators in modeling recombination hotspots in genomic sequences. BMC Bioinformatics , 2014, 15: 3. [60] Wiuf C, Hein J. Recombination as a point process along sequences. Theor Popul Biol , 1999, 55(3): 248-259. [61] McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Philos Trans R Soc Lond B Biol Sci , 2005, 360(1459): 1387-1393. [62] Eriksson A, Mahjani B, Mehlig B. Sequential Markov coalescent algorithms for population models with demographic structure. Theor Popul Biol , 2009, 76(2): 84-91. [63] Marjoram P, Wall JD. Fast “coalescent” simulation. BMC Genet , 2006, 7: 16. [64] Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA sequence data. Genome Res , 2009, 19(1): 136-142. [65] Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics , 2002, 18(2): 337-338. [66] Hellenthal G, Stephens M. msHOT: modifying Hudson's ms simulator to incorporate crossover and gene conversion hotspots. Bioinformatics , 2007, 23(4): 520-521. [67] Ramos-Onsins SE, Mitchell-Olds T. Mlcoalsim: multilocus coalescent simulations. Evol Bioinform , 2007, 3: 41-44. [68] Liang LM, Zöllner S, Abecasis GR. GENOME: a rapid coalescent-based whole genome simulator. Bioinformatics , 2007, 23(12): 1565-1567. [69] Currat M, Ray N, Excoffier L. SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol Ecol Notes , 2004, 4(1): 139-142. [70] Mailund T, Schierup MH, Pedersen CNS, Mechlenborg PJM, Madsen JN, Schauser L. CoaSim: a flexible environment for simulating genetic data under coalescent models. BMC Bioinformatics , 2005, 6: 252. [71] Antao T, Beja-Pereira A, Luikart G. MODELER4SIMCOAL2: a user-friendly, extensible modeler of demography and linked loci for coalescent simulations. Bioinformatics , 2007, 23(14): 1848-1850. [72] Anderson CN, Ramakrishnan U, Chan YL, Hadly EA. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics , 2005, 21(8): 1733-1734. [73] Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet , 2013, 9(10): e1003905. [74] Spencer CCA, Coop G. SelSim: a program to simulate population genetic data with natural selection and recombination. Bioinformatics , 2004, 20(18): 3673-3675. [75] Teshima KM, Innan H. mbs: modifying Hudson's ms software to generate samples of DNA sequences with a biallelic site under selection. BMC Bioinformatics , 2009, 10: 166. [76] Ewing G, Hermisson J. MSMS : a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics , 2010, 26(16): 2064-2065. [77] Ilves KL, Huang W, Wares JP, Hickerson MJ. Colonization and/or mitochondrial selective sweeps across the North Atlantic intertidal assemblage revealed by multi-taxa approximate Bayesian computation. Mol Ecol , 2010, 19(20): 4505-4519. [78] Wernsdörfer H, Caron H, Gerber S, Cornu G, Rossi V, Mortier F, Gourlet-Fleury S. Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes. Conserv Genet , 2011, 12(1): 15- 29. [79] Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. Computational solutions to large-scale data management and analysis. Nat Rev Genet , 2010, 11(9): 647-657. [80] Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour , 2010, 10(3): 564-567. [81] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol , 2013, 30(12): 2725-2729. [82] Rambaut A, Grassly NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput Appl Biosci , 1997, 13(3): 235-238. (责任编委: 赵方庆) |
[1] | 胡健,周逸人,丁佳琳,王志远,刘凌,王业开,娄慧玲,乔守怡,吴燕华. ABO血型综合实验基因分型技术简化及其群体遗传分析拓展[J]. 遗传, 2017, 39(5): 423-429. |
[2] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[3] | 陈峰,陈腾,阎春霞,党永辉,穆豪放,于晓光,张博,邓亚军. 运用多重PCR-直接测序法检测ABO基因型及其遗传多态性[J]. 遗传, 2008, 30(6): 704-710. |
[4] | 高婧,潘沈元,曹静. 群体遗传学教学与研究辅助软件的设计与应用[J]. 遗传, 2008, 30(5): 642-648. |
[5] | 李伟,陈怀谷,李伟,张爱香,陈丽华,姜伟丽. 核盘菌和灰葡萄孢基因组中的简单重复序列分析[J]. 遗传, 2007, 29(9): 1154-1154―1160. |
[6] | 桂宏胜,杨丽,李生斌. 群体遗传学研究中STR数据的统计方法应用[J]. 遗传, 2007, 29(12): 1443-1148. |
[7] | 王云生,黄宏文,王瑛. 植物分子群体遗传学研究动态[J]. 遗传, 2007, 29(10): 1191-1191―1198. |
[8] | 潘沈元,屈艾,彭会,李爱玲. 两个基因座位的遗传平衡原理[J]. 遗传, 2004, 26(2): 215-218. |
[9] | 吕德坚,刘秋玲,陆惠玲. 广东省汉族人群的亚群分析[J]. 遗传, 2003, 25(6): 645-648. |
[10] | 罗海燕,聂品. 寄生蠕虫的群体遗传学研究[J]. 遗传, 2002, 24(4): 477-482. |
[11] | 杨长锁,吴常信. 有限群体中基因频率概率分布的模拟实验[J]. 遗传, 1993, 15(3): 12-15. |
[12] | 黎曼侬,周增娣,姜竹春,张卫红,司宝敏. 云南傣族、景颇族、阿昌族PTC尝味能力的测定[J]. 遗传, 1993, 15(2): 1-4. |
[13] | 翁自力,杜若甫,袁义达. 中国人群红细胞血型座位的杂合度[J]. 遗传, 1990, 12(1): 38-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: