遗传 ›› 2022, Vol. 44 ›› Issue (5): 414-423.doi: 10.16288/j.yczz.22-057
收稿日期:
2022-03-06
修回日期:
2022-04-10
出版日期:
2022-05-20
发布日期:
2022-04-19
通讯作者:
刘逸宸
E-mail:zhengzequqn18@mails.ucas.ac.cn;yichen.liu@ivpp.ac.cn
作者简介:
郑泽权,在读硕士研究生,专业方向:古基因组学。E-mail: 基金资助:
Zequan Zheng1,2,3(), Qiaomei Fu1,2,3, Yichen Liu1()
Received:
2022-03-06
Revised:
2022-04-10
Online:
2022-05-20
Published:
2022-04-19
Contact:
Liu Yichen
E-mail:zhengzequqn18@mails.ucas.ac.cn;yichen.liu@ivpp.ac.cn
Supported by:
摘要:
发酵生产是人类最原始的对微生物的应用和实践,在人类历史上具有重要意义。然而,由于分子证据的匮乏,人类发酵生产的演变历程及相关发酵微生物的演化和驯化历史尚不清楚。本文以目前最常见的两类发酵食品——酒及发酵乳品为例介绍了发酵食品考古和相关发酵微生物的演化和驯化研究,以及古微生物学和发酵古微生物的研究现状,并讨论了将微生物古DNA技术应用于古代发酵微生物研究的可行性和难点,展示了古DNA捕获技术在本领域的应用潜力,为发酵微生物演化研究提供了新的思路和方法。
郑泽权, 付巧妹, 刘逸宸. 应用古DNA技术探究发酵微生物的适应、演化和驯化历史[J]. 遗传, 2022, 44(5): 414-423.
Zequan Zheng, Qiaomei Fu, Yichen Liu. Exploration of adaptation, evolution and domestication of fermentation microorganisms by applying ancient DNA technology[J]. Hereditas(Beijing), 2022, 44(5): 414-423.
表1
现代发酵食品"
发酵食品类别 | 食品举例 | 考古发现或文献记载的最早生产地点和时间 | 参考文献 |
---|---|---|---|
乳制品 | 各类酸奶和乳酪,如Dahi、Kefir、Kumys等 | 西亚地区,约公元前6000年 | [ |
谷物和豆制品 | 各类面包、发酵面饼,以及酱油、味噌等 | 东亚地区,约公元前1000年 | [ |
植物根茎制品 | Gari、Fufu等非洲地区传统食品 | - | - |
果蔬制品 | 酒精饮料,以及Sauerkraut、Kimchi等一些腌制蔬菜 | 中国,约公元前7000年 | [ |
鱼制品 | 鱼露、鱼酱和一些腌制鱼 | 欧洲地区,公元前500年至公元500年 | [ |
肉制品 | 一些腌制肉(猪肉、牛肉等)和香肠 | 中国,约公年前1500年 | [ |
[1] | Joshi VK, Pandey A. Biotechnology: Food Fermentations, Vol. I. Educational Publishers and Distributors, New Delhi, 1999, 1-24. |
[2] |
McGovern PE, Zhang JZ, Tang JG, Zhang ZQ, Hall GR, Moreau RA, Nuñez A, Butrym ED, Richards MP, Wang CS, Cheng GS, Zhao ZJ, Wang CS. Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA, 2004, 101(51):17593-17598.
doi: 10.1073/pnas.0407921102 |
[3] |
Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, Evershed RP. Earliest evidence for cheese making in the sixth millennium bc in northern Europe. Nature, 2013, 493(7433):522-525.
doi: 10.1038/nature11698 |
[4] | Farnworth ER. Handbook of Fermented Functional Foods, Second Edition. CRC Press, 2008. |
[5] | Yong FM, Wood BJB. Microbiology and biochemistry of soy sauce fermentation. Adv Appl Microbiol, 1974, 17:157-194. |
[6] | Beddows CG. Fermented fish and fish products. In: Microbiology of Fermented Foods, Vol. 2. Wood BJB, Ed. Elsevier Applied Sci. Publ., London, 1985: 1-40. |
[7] | Pederson CS. Microbiology of Food Fermentations. The AVI Publ. Co., Connecticut, 1971: 1-274. |
[8] |
Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature, 2009, 457(7231):843-848.
doi: 10.1038/nature07895 |
[9] |
Driscoll CA, Macdonald DW, O’Brien SJ. From wild animals to domestic pets, an evolutionary view of domestication. Proc Natl Acad Sci USA, 2009, 106(Suppl 1):9971-9978.
doi: 10.1073/pnas.0901586106 |
[10] | Arning N, Wilson DJ. The past, present and future of ancient bacterial DNA. Microb Genom, 2020, 6(7): mgen000384. |
[11] |
Warinner C, Rodrigues JMF, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC, Eppler E, Seiler R, Hansen LH, Castruita JAS, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM, Collins MJ, Gilbert MTP, Rühli F, Cappellini E. Pathogens and host immunity in the ancient human oral cavity. Nat Genet, 2014, 46(4):336-344.
doi: 10.1038/ng.2906 |
[12] |
Sabin S, Yeh HY, Pluskowski A, Clamer C, Mitchell PD, Bos KI. Estimating molecular preservation of the intestinal microbiome via metagenomic analyses of latrine sediments from two medieval cities. Philos Trans R Soc Lond B Biol Sci, 2020, 375(1812):20190576.
doi: 10.1098/rstb.2019.0576 |
[13] |
Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C, Duranti S, van Sinderen D, Ventura M. Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. Microbiome, 2017, 5(1):5.
doi: 10.1186/s40168-016-0221-y |
[14] |
Cavalieri D, McGovern PE, Hartl DL, Mortimer R, Polsinelli M. Evidence for S. cerevisiae fermentation in ancient wine. J Mol Evol, 2003, 57 Suppl 1: S226-S232.
doi: 10.1007/s00239-003-0031-2 |
[15] |
Blanco-Zubiaguirre L, Olivares M, Castro K, Carrero JA, García-Benito C, García-Serrano JÁ, Pérez-Pérez J, Pérez-Arantegui J. Wine markers in archeological potteries: detection by GC-MS at ultratrace levels. Anal Bioanal Chem, 2019, 411(25):6711-6722.
doi: 10.1007/s00216-019-02044-1 pmid: 31372702 |
[16] |
Pecci A, Giorgi G, Salvini L, Cau Ontiveros MÁ. Identifying wine markers in ceramics and plasters using gas chromatography-mass spectrometry. Experimental and archaeological materials. J Archaeol Sci, 2013, 40(1):109-115.
doi: 10.1016/j.jas.2012.05.001 |
[17] |
Rageot M, Mötsch A, Schorer B, Bardel D, Winkler A, Sacchetti F, Chaume B, Casa PD, Buckley S, Cafisso S, Fries-Knoblach J, Krausse D, Hoppe T, Stockhammer P, Spiteri C. New insights into Early Celtic consumption practices: organic residue analyses of local and imported pottery from Vix-Mont Lassois. PLoS One, 2019, 14(6):e0218001.
doi: 10.1371/journal.pone.0218001 |
[18] |
Shevchenko A, Yang YM, Knaust A, Thomas H, Jiang HE, Lu EG, Wang CS, Shevchenko A. Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteomics, 2014, 105:363-371.
doi: 10.1016/j.jprot.2013.11.016 pmid: 24291353 |
[19] |
Henderson JS, Joyce RA, Hall GR, Hurst WJ, McGovern PE. Chemical and archaeological evidence for the earliest cacao beverages. Proc Natl Acad Sci USA, 2007, 104(48):18937-18940.
doi: 10.1073/pnas.0708815104 |
[20] |
Mcgovern PE. Ancient wine: the search for the origins of viniculture. Economic Botany, 2003, 58:488.
doi: 10.1663/0013-0001(2004)058[0488:DFABRE]2.0.CO;2 |
[21] | Mcgovern P, Jalabadze M, Batiuk S, Callahan MP, Smith KE, Hall GR, Kvavadze E, Maghradze D, Rusishvili N, Bouby L, Failla O, Cola G, Mariani L, Boaretto E, Bacilieri R, This P, Wales N, Lordkipanidze D. Early Neolithic wine of Georgia in the South Caucasus. Proc Natl Acad Sci USA, 2017, 114(48):E10309-E10318. |
[22] |
McGovern PE, Mirzoian A, Hall GR. Ancient Egyptian herbal wines. Proc Natl Acad Sci USA, 2009, 106(18):7361-7366.
doi: 10.1073/pnas.0811578106 |
[23] |
Manzano E, Cantarero S, García A, Adroher A, Vílchez JL. A multi-analytical approach applied to the archaeological residues in Iberian glasses. Earliest evidences on the consumption of fermented beverages in votive rituals. Microchem J, 2016, 129:286-292.
doi: 10.1016/j.microc.2016.07.006 |
[24] |
Mcclure SB, Magill C, Podrug E, Moore AMT, Harper TK, Culleton BJ, Kennett DJ, Freeman KHF. Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7,200 years ago. PLoS One, 2018, 13(9):e0202807.
doi: 10.1371/journal.pone.0202807 |
[25] |
Yang YM, Shevchenko A, Knaust A, Abuduresule I, Li WY, Hu XJ, Wang CS, Shevchenko A. Proteomics evidence for kefir dairy in Early Bronze Age China. J Archaeol Sci, 2014, 45:178-186.
doi: 10.1016/j.jas.2014.02.005 |
[26] |
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 2016, 166(6): 1397-1410.e16.
doi: 10.1016/j.cell.2016.08.020 |
[27] |
Marsit S, Sanchez I, Galeote V, Dequin S. Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment. Environ Microbiol, 2016, 18(4):1148-1161.
doi: 10.1111/1462-2920.13117 |
[28] |
Pérez-Ortín J, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res, 2002, 12(10):1533-1539.
pmid: 12368245 |
[29] |
Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt SW, Louis EJ, Liti G, Moses A, Blomberg A. Trait variation in yeast is defined by population history. PLoS Genet, 2011, 7(6):e1002111.
doi: 10.1371/journal.pgen.1002111 |
[30] |
Fijarczyk A, Hénault M, MaRsit S, Charron G, Fischborn T, Nicole-Labrie L, Landry CR. The genome sequence of the Jean-Talon strain, an archeological beer yeast from Québec, reveals traces of adaptation to specific brewing conditions. G3 (Bethesda), 2020, 10(9):3087-3097.
doi: 10.1534/g3.120.401149 |
[31] |
Legras J-L, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol Biol Evol, 2018, 35(7):1712-1727.
doi: 10.1093/molbev/msy066 |
[32] |
Erny C, Raoult P, Alais A, Butterlin G, Delobel P, Matei- Radoi F, Casaregola S, Legras JL. Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the Northern European wine-making environment. Appl Environ Microbiol, 2012, 78(9):3256-3265.
doi: 10.1128/AEM.06752-11 |
[33] |
Barbosa R, Almeida P, Safar SVB, Santos RO, Morais PB, Nielly-Thibault L, Leducq JB, Landry CR, Gonçalves P, Rosa CA, Sampaio JP. Evidence of natural hybridization in Brazilian wild lineages of Saccharomyces cerevisiae. Genome Biol Evol, 2016, 8(2):317-329.
doi: 10.1093/gbe/evv263 pmid: 26782936 |
[34] |
Price CE, Zeyniyev A, Kuipers OP, Kok J. From meadows to milk to mucosa-adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev, 2012, 36(5):949-971.
doi: 10.1111/j.1574-6976.2011.00323.x |
[35] |
Cavanagh D, Fitzgerald GF, McAuliffe O. From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment. Food Microbiol, 2015, 47:45-61.
doi: 10.1016/j.fm.2014.11.001 pmid: 25583337 |
[36] |
Wels M, Siezen R, van Hijum S, Kelly WJ, Bachmann H. Comparative genome analysis of Lactococcus lactis indicates niche adaptation and resolves genotype/phenotype disparity. Front Microbiol, 2019, 10:4.
doi: 10.3389/fmicb.2019.00004 |
[37] |
G-Alegrı́a E, López I, Ruiz JI, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett, 2004, 230(1):53-61.
pmid: 14734166 |
[38] |
Bartowsky EJ, Borneman AR. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl Microbiol Biotechnol, 2011, 92(3):441-447.
doi: 10.1007/s00253-011-3546-2 pmid: 21870044 |
[39] |
Lorentzen MP, Campbell-Sills H, Jorgensen TS, Nielsen TK, Coton M, Coton E, Hansen L, Lucas PM. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. BMC Genomics, 2019, 20(1):330.
doi: 10.1186/s12864-019-5692-3 pmid: 31046679 |
[40] |
Cooper A, Poinar HN. Ancient DNA: do it right or not at all. Science, 2000, 289(5482):1139.
pmid: 10970224 |
[41] |
Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res, 2010, 38(6):e87.
doi: 10.1093/nar/gkp1163 |
[42] | Dabney J, Meyer M, Pääbo S. Ancient DNA damage. Cold Spring Harb Perspect Biol, 2013, 5(7):a012567. |
[43] |
Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One, 2012, 7(3):e34131.
doi: 10.1371/journal.pone.0034131 |
[44] | Llamas B, Valverde G, Fehren-Schmitz L, Weyrich LS, Cooper A, Haak W. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. Sci Technol Archaeol Res, 2017, 3(1):1-14. |
[45] |
Chan JZM, Sergeant MJ, Lee OYC, Minnikin DE, Besra GS, Pap I, Spigelman M, Donoghue HD, Pallen MJ. Metagenomic analysis of Tuberculosis in a mummy. N Engl J Med, 2013, 369(3):289-290.
doi: 10.1056/NEJMc1302295 |
[46] |
Schuenemann VJ, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, Bonazzi M, Reiter E, Urban C, Pedersen DD, Taylor GM, Singh P, Stewart GR, Velemínský P, Likovsky J, Marcsik A, Molnár E, Pálfi G, Mariotti V, Riga A, Belcastro MG, Boldsen JL, Nebel A, Mays S, Donoghue HD, Zakrzewski S, Benjak A, Nieselt K, Cole ST, Krause J. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog, 2018, 14(5):e1006997.
doi: 10.1371/journal.ppat.1006997 |
[47] |
Zhou ZM, Lundstrøm I, Tran-Dien A, Duchêne S, Alikhan NF, Sergeant MJ, Langridge G, Fotakis AK, Nair S, Stenøien HK, Hamre SS, Casjens S, Christophersen A, Quince C, Thomson NR, Weill FX, Ho SYW, Gilbert MTP, Achtman M. Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the Invasive Para C lineage for Millennia. Curr Biol, 2018, 28(15): 2420-2428.e10.
doi: 10.1016/j.cub.2018.05.058 |
[48] |
Schuenemann VJ, Lankapalli AK, Barquera R, Nelson EA, Hernández DI, Alonzo VA, Bos KI, Morfín LM, Herbig A, Krause J. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trop Dis, 2018, 12(6):e0006447.
doi: 10.1371/journal.pntd.0006447 |
[49] |
Keller M, Spyrou MA, Scheib CL, Neumann GU, Kröpelin A, Haas-Gebhard B, Päffgen B, Haberstroh J, Lacomba ARI, Raynaud C, Cessford C, Durand R, Stadler P, Nägele K, Bates JS, Trautmann B, Inskip SA, Peters J, Robb JE, Kivisild T, Castex D, McCormick M, Bos KI, Harbeck M, Herbig A, Krause J. AncientYersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541-750). Proc Natl Acad Sci USA, 2019, 116(25):12363-12372.
doi: 10.1073/pnas.1820447116 |
[50] |
Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJA, Townsend G, Sołtysiak A, Alt KW, Parkhill J, Cooper A. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet, 2013, 45(4):450-455.
doi: 10.1038/ng.2536 |
[51] |
Warinner C, Herbig A, Mann A, Yates JAF, Weiß CL, Burbano HA, Orlando L, Krause J. A robust framework for microbial archaeology. Annu Rev Genomics Hum Genet, 2017, 18:321-356.
doi: 10.1146/annurev-genom-091416-035526 |
[52] |
Campana MG, Robles García N, Rühli FJ, Tuross N. False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing. BMC Res Notes, 2014, 7:111.
doi: 10.1186/1756-0500-7-111 |
[53] |
Weiß CL, Gansauge MT, Aximu-Petri A, Meyer M, Burbano HA. Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC Genomics, 2020, 21(1):432.
doi: 10.1186/s12864-020-06820-7 |
[54] |
Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics, 2011, 27(15):2153-2155.
doi: 10.1093/bioinformatics/btr347 |
[55] |
Hübler R, Key FM, Warinner C, Bos KI, Krause J, Herbig A. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol, 2019, 20(1):280.
doi: 10.1186/s13059-019-1903-0 pmid: 31842945 |
[56] |
Rollo F, Luciani S, Marota I, Olivieri C, Ermini L. Persistence and decay of the intestinal microbiota’s DNA in glacier mummies from the Alps. J Archaeol Sci, 2007, 34(8):1294-1305.
doi: 10.1016/j.jas.2006.10.019 |
[57] |
Ziesemer KA, Mann AE, Sankaranarayanan K, Schroeder H, Ozga AT, Brandt BW, Zaura E, Waters-Rist A, Hoogland M, Salazar-García DC, Aldenderfer M, Speller C, Hendy J, Weston DA, MacDonald SJ, Thomas GH, Collins MJ, Lewis CM, Hofman C, Warinner C. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification. Sci Rep, 2015, 5:16498.
doi: 10.1038/srep16498 pmid: 26563586 |
[58] |
Bidle KD, Lee S, Marchant DR, Falkowski PG. Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA, 2007, 104(33):13455-13460.
doi: 10.1073/pnas.0702196104 |
[59] |
Fu QM, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, Pääbo S. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci USA, 2013, 110(6):2223-2227.
doi: 10.1073/pnas.1221359110 |
[60] |
Burbano HA, Green RE, Maricic T, Lalueza-Fox C, de la Rasilla M, Rosas A, Kelso J, Pollard KS, Lachmann M, Pääbo S. Analysis of human accelerated DNA regions using archaic hominin genomes. PLoS One, 2012, 7(3):e32877.
doi: 10.1371/journal.pone.0032877 |
[61] |
Burbano HA, Hodges E, Green RE, Briggs AW, Krause J, Meyer M, Good JM, Maricic T, Johnson PLF, Xuan ZY, Rooks M, Bhattacharjee A, Brizuela L, Albert FW, de la Rasilla M, Fortea J, Rosas A, Lachmann M, Hannon GJ, Pääbo S. Targeted investigation of the Neandertal genome by array-based sequence capture. Science, 2010, 328(5979):723-725.
doi: 10.1126/science.1188046 pmid: 20448179 |
[62] |
Avila-Arcos MC, Cappellini E, Romero-Navarro JA, Wales N, Moreno-Mayar JV, Rasmussen M, Fordyce SL, Montiel R, Vielle-Calzada JP, Willerslev E, Gilbert MTP. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci Rep, 2011, 1:74.
doi: 10.1038/srep00074 pmid: 22355593 |
[63] |
Slon V, Hopfe C, Weiß CL, Mafessoni F, de la Rasilla M, Lalueza-Fox C, Rosas A, Soressi M, Knul MV, Miller R, Stewart JR, Derevianko AP, Jacobs Z, Li B, Roberts RG, Shunkov MV, de Lumley H, Perrenoud C, Gušić I, Kućan Ž, Rudan P, Aximu-Petri A, Essel E, Nagel S, Nickel B, Schmidt A, Prüfer K, Kelso J, Burbano HA, Pääbo S, Meyer M. Neandertal and Denisovan DNA from Pleistocene sediments. Science, 2017, 356(6338):605-608.
doi: 10.1126/science.aam9695 |
[64] | Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a snapshot of ancient microbes and approaches to forensic microbiology. Microbiol Spectr, 2016, 4(4). |
[65] |
Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis, 2004, 4(9):584-592.
pmid: 15336226 |
[1] | 邢超凡, 王闽涛, 王磊, 申欣. 两侧对称动物左右不对称发生机制研究进展[J]. 遗传, 2023, 45(6): 488-500. |
[2] | 平婉菁, 刘逸宸, 付巧妹. 沉积物古DNA探秘灭绝古人类演化[J]. 遗传, 2022, 44(5): 362-369. |
[3] | 高珊珊, 李金良, 杨佳妮, 周通, 刘瑞, 王晓萍, 于黎. 哺乳动物滑翔和飞行性状适应性演化研究进展[J]. 遗传, 2022, 44(1): 46-58. |
[4] | 王娅洁, 吴爽爽, 储江, 孔祥阳. 肺部微生物组通过炎症反应介导慢性阻塞性肺疾病转化为肺癌的研究进展[J]. 遗传, 2021, 43(1): 30-39. |
[5] | 赵利楠, 王娜, 杨国良, 苏现斌, 韩泽广. 基于单细胞靶向测序探究基因碱基突变的方法[J]. 遗传, 2020, 42(7): 703-712. |
[6] | 刘永鑫,秦媛,郭晓璇,白洋. 微生物组数据分析方法与应用[J]. 遗传, 2019, 41(9): 845-862. |
[7] | 史晓黎,何伊琳,凌宏清. 小麦A基因组测序与进化研究进展[J]. 遗传, 2019, 41(9): 836-844. |
[8] | 何祥鹏,邹秉杰,齐谢敏,陈杉,陆妍,黄青,周国华. 基于核酸等温扩增的病原微生物微流控检测技术[J]. 遗传, 2019, 41(7): 611-624. |
[9] | 于雪新,陈艾莉,李玥莹,刘丹,王前飞. 白血病的精准基因组医学研究与转化应用[J]. 遗传, 2018, 40(11): 988-997. |
[10] | 田娇阳, 李玉春, 孔庆鹏, 张亚平. 遗传学视角下东亚人群的起源和演化[J]. 遗传, 2018, 40(10): 814-824. |
[11] | 谢建平, 韩玉波, 刘钢, 白林泉. 2015年中国微生物遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(9): 765-790. |
[12] | 陈昱帆, 刘诗胤, 梁志彬, 吕明发, 周佳暖, 张炼辉. 群体感应与微生物耐药性[J]. 遗传, 2016, 38(10): 881-893. |
[13] | 陈嘉焕, 孙政, 王晓君, 苏晓泉, 宁康. 元基因组学及其在转化医学中的应用[J]. 遗传, 2015, 37(7): 645-654. |
[14] | 梁亮, 梁世倩, 秦鸿雁, 冀勇, 韩骅. 利用文献精读教学新模式优化遗传学教学[J]. 遗传, 2015, 37(6): 599-604. |
[15] | 程曦,田彩娟,李爱宁,邱金龙. 植物与病原微生物互作分子基础的研究进展[J]. 遗传, 2012, 34(2): 134-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: