遗传 ›› 2012, Vol. 34 ›› Issue (2): 134-144.doi: 10.3724/SP.J.1005.2012.00134
程曦, 田彩娟, 李爱宁, 邱金龙
收稿日期:
2011-05-12
修回日期:
2011-07-27
出版日期:
2012-02-20
发布日期:
2012-02-25
通讯作者:
邱金龙
E-mail:qiujl@im.ac.cn
基金资助:
中国科学院知识创新工程重要方向项目(编号: KSCX2-EW-J-6)资助
CHENG Xi, TIAN Cai-Juan, LI Ai-Ning, QIU Jin-Long
Received:
2011-05-12
Revised:
2011-07-27
Online:
2012-02-20
Published:
2012-02-25
摘要: 植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别, 该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity, PTI), 能帮助植物抵抗大部分病原微生物; 第二个层面的免疫起始于细胞内部, 主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应, 来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物, 这一过程被称为效应子触发的免疫(Effector-triggered immunity, ETI)。这两个层面的免疫都是基于植物对“自我”及“非我”的识别, 依靠MAPK级联等信号网络, 将识别结果传递到细胞核内, 调控相应基因的表达, 做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。
程曦,田彩娟,李爱宁,邱金龙. 植物与病原微生物互作分子基础的研究进展[J]. 遗传, 2012, 34(2): 134-144.
[1] Jones JDG, Dangl JL. The plant immune system. Nature, 2006, 444(7117): 323-329.[2] Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744.[3] Takken FLW, Tameling WIL. To nibble at plant resistance proteins. Science, 2009, 324(5928): 744-746.[4] Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol, 2008, 20(1): 10-16.[5] Naito K, Taquchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant-Microbe Interact, 2008, 21(9): 1165-1174.[6] van de Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Micro-biol, 2008, 11(4): 305-312.[7] Postel S, Kemmerling B. Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol, 2009, 20(9): 1025-1031.[8] Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J, 1999, 18(3): 265-276.[9] Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 2006, 18(2): 465-476.[10] Dunning FM, Sun WX, Jansen KL, Helft L, Bent AF. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell, 2007, 19(10): 3297-3313.[11] Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu SH, Boller T. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol, 2007, 64(5): 539-547.[12] Hann DR, Rathjen JP. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana bentha-miana. Plant J, 2007, 49(4): 607-618.[13] Takai R, Isogai A, Takayama S, Che FS. Analysis of flag-ellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact, 2008, 21(12): 1635-1642.[14] de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J, 2006, 47(3): 368-382.[15] Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004, 428(6984): 764-767.[16] Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 2004, 16(12): 3496-3507.[17] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125(4): 749-760.[18] Dallo SF, Kannan TR, Blaylock MW, Baseman JB. Elon-gation factor Tu and E1 β subunit of pyruvate dehydro-genase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol, 2002, 46(4): 1041-1051.[19] Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthésy-Theulaz IE. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun, 2004, 72(4): 2160-2169.[20] Lee Sw, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326(5954): 850-853.[21] Ron M, Avni A. The receptor for the fungal elicitor ethyl-ene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 2004, 16(6): 1604-1615.[22] Wang GD, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJGM, Jones JDG, Tör M, Thomma BPHJ. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol, 2008, 147(2): 503-517.[23] Ramonell K, Berrocal-Lobo M, Koh S, Wan JR, Edwards H, Stacey G, Somerville S. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol, 2005, 138(2): 1027-1036.[24] Fliegmann J, Mithöfer A, Wanner G, Ebel J. An ancient enzyme domain hidden in the putative β-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J Biol Chem, 2004, 279(2): 1132-1140.[25] Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA, 2006, 103(29): 11086-11091.[26] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104(49): 19613-19618.[27] Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 2008, 20(2): 471-481.[28] Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol, 2009, 19(5): 423-429.[29] Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127(3): 803-816.[30] Wang WF, Kota U, He K, Blackburn K, Li J, Goshe MB, Huber SC, Clouse SD. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell, 2008, 15(2): 220-235.[31] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T. A flagel-lin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448(7152): 497-500.[32] Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA, 2007, 104(29): 12217-12222.[33] Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4): 783-801.[34] Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T. The mem-brane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell, 2006, 18(1): 257-273.[35] Zhang J, Li W, Xiang TT, Liu ZX, Laluk K, Ding XJ, Zou Y, Gao MH, Zhang XJ, Chen S, Mengiste T, Zhang YL, Zhou JM. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe, 2010, 7(4): 290-301.[36] Lu DP, Wu SJ, Gao XQ, Zhang YL, Shan LB, He P. A re-ceptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immu-nity. Proc Natl Acad Sci USA, 2010, 107(1): 496-501.[37] MAPK Group, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wil-son C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7(7): 301-308.[38] Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol, 2009, 12(4): 421-426.[39] Gao MH, Liu JM, Bi DL, Zhang ZB, Cheng F, Chen SF, Zhang YL. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res, 2008, 18(12): 1190-1198.[40] Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK, Petersen K, MacKinlay J, Loake GJ, Mundy J, Morris PC. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol, 2008, 148(1): 212-222.[41] Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu SJ, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, Bjørn Nielsen H, Hirt H, Somssich I, Mattsson O, Mundy J. The MAP kinase sub-strate MKS1 is a regulator of plant defense responses. EMBO J, 2005, 24(14): 2579-2589.[42] Brodersen P, Petersen M, Bjørn Nielsen H, Zhu SJ, New-man MA, Shokat KM, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 2006, 47(4): 532-546.[43] Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sand-bech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J, 2008, 27(16): 2214-2221.[44] Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem, 2006, 281(48): 36969-36976.[45] Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415(6875): 977-983.[46] Pitzschke A, Schikora A, Hirt H. MAPK cascade signal-ling networks in plant defence. Curr Opin Plant Biol, 2009, 12(4): 421-426.[47] Ren DT, Liu YD, Yang KY, Han L, Mao GH, Glazebrook J, Zhang SQ. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA, 2008, 105(14): 5638-5643.[48] Mao GH, Meng XZ, Liu YD, Zheng ZY, Chen ZX, Zhang SQ. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin bio-synthesis in Arabidopsis. Plant Cell, 2011, Epub ahead of print.[49] Citovsky V, Kapelnikov A, Oliel S, Zakai N, Rojas MR, Gilbertson RL, Tzfira T, Loyter A. Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem, 2004, 279(28): 29528-29533.[50] Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H. Tro-jan horse strategy in Agrobacterium transforma-tion: abusing MAPK defense signaling. Science, 2007, 318(5849): 453-456.[51] Schulze-Lefert P, Panstruga R. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol, 2003, 41: 641- 667.[52] Badel JL, Charkowski AO, Deng WL, Collmer A. A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. Mol Plant-Microbe Interact, 2002, 15(10): 1014-1024.[53] Lindgren RB. The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol, 1997, 35: 129-152.[54] Hauck P, Thilmony R, He SY. A Pseudomonas syrin-gae type III effector suppresses cell wall-based ex-tracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci USA, 2003, 100(14): 8577-8582.[55] He P, Shan LB, Lin NC, Martin GB, Kemmerling B, Nürnberger T, Sheen J. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidop-sis innate immunity. Cell, 2006, 125(3): 563-575.[56] Xiang TT, Zong N, Zou Y, Wu Y, Zhang J, Xing WM, Li Y, Tang XY, Zhu LH, Chai JJ, Zhou JM. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol, 2008, 18(1): 74-80.[57] Shan LB, He P, Li JM, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe, 2008, 4(1): 17-27.[58] Gohre V, Spallek T, Häweker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield JW, Robatzek S. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol, 2008, 18(23): 1824-1832.[59] Li XY, Lin HQ, Zhang WG, Zou Y, Zhang J, Tang XY, Zhou JM. Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA, 2005, 102(36): 12990-12995.[60] Kang L, Li JX, Zhao TH, Xiao FM, Tang XY, Thilmony R, He Sy, Zhou JM. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA, 2003, 100(6): 3519-3524.[61] Zhang J, Shao F, Li Y, Cui HT, Chen LJ, Li HT, Zou Y, Long CZ, Lan LF, Chai JJ, Chen S, Tang XY, Zhou JM. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe, 2007, 1(3): 175-185.[62] Panstruga R, Dodds PN. Terrific protein traffic: the mys-tery of effector protein delivery by filamentous plant pathogens. Science, 2009, 324(5928): 748-750.[63] Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ. A translocation signal for delivery of oomycete ef-fector proteins into host plant cells. Nature, 2007, 450(7166): 115-118.[64] Dou DL, Kale SD, Wang X, Jiang RHY, Bruce NA, Arre-dondo FD, Zhang XM, Tyler BM. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell, 2008, 20(7): 1930-1947.[65] Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell, 2006, 18(1): 243-256.[66] Manning VA, Ciuffetti LM. Localization of Ptr ToxA pro-duced by Pyrenophora triticirepentis reveals protein import into wheat mesophyll cells. Plant Cell, 2005, 17(11): 3203-3212.[67] Lukasik E, Takken FL. STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol, 2009, 12(4): 427-436.[68] Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.[69] Elmore JM, Lin ZJD, Coaker G. Plant NB-LRR signaling: upstreams and downstreams. Curr Opin Plant Biol, 2011, 14(4): 365-371.[70] Collier SM, Moffett P. NB-LRRs work a "bait and switch" on pathogens. Trends Plant Sci, 2009, 14(10): 521-529.[71] Axtell MJ, Staskawicz BJ. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2- directed elimination of RIN4. Cell, 2003, 112(3): 369-377.[72] Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. The type III effector HopF2 Pto targets Arabidopsis RIN4 protein to pro-mote Pseudomonas syringae virulence. Proc Natl Acad Sci USA, 2010, 107(5): 2349-2354.[73] Mackey D, Holt BF III, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108(6): 743-754.[74] Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during patho-gen attack. PLoS Biol, 2009, 7(6): e1000139.[75] Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science, 2003, 301(5637): 1230-1233.[76] Abramovitch RB, Martin GB. AvrPtoB: a bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiol Lett, 2005, 245(1): 1-8.[77] Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell, 2006, 18(10): 2792-2806.[78] Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resis-tance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100(13): 8024-8029.[79] Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CIA, Ayliffe MA, Kobe B, Ellis JG. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA, 2006, 103(23): 8888-8893.[80] Catanzariti AM, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol Plant-Microbe Inter-act, 2010, 23(1): 49-57.[81] Jia YL, McAdams SA, Bryan GT, Hershey HP Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19(15): 4004-4014.[82] Krasileva KV, Dahlbeck D, Staskawicz BJ. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell, 2010, 22(7): 2444-2458.[83] Caplan J, Padmanabhan M, Dinesh-Kumar SP. Plant NB-LRR immune receptors: from recognition to tran-scriptional reprogramming. Cell Host Microbe, 2008, 3(3): 126-135. |
[1] | 何祥鹏,邹秉杰,齐谢敏,陈杉,陆妍,黄青,周国华. 基于核酸等温扩增的病原微生物微流控检测技术[J]. 遗传, 2019, 41(7): 611-624. |
[2] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[3] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[4] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[5] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[6] | 刘小民, 袁明龙. 昆虫天然免疫相关基因研究进展[J]. 遗传, 2018, 40(6): 451-466. |
[7] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[8] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[9] | 周欣,李伟芸,王红艳. MST1/2调控先天免疫的功能和机制[J]. 遗传, 2017, 39(7): 642-649. |
[10] | 陈青云,李有志,樊宪伟. 植物气孔发育的分子调控机制[J]. 遗传, 2017, 39(4): 302-312. |
[11] | 高飞雁, 李玲, 王教瑜, 王艳丽, 孙国昌. PEX基因在过氧化物酶体形成及真菌致病性中的作用[J]. 遗传, 2017, 39(10): 908-917. |
[12] | 王钦美, 崔建国, 于长志, 张智, 吴月亮, 张丽杰, 林梅. 案例教学在林学专业遗传学教学中的应用[J]. 遗传, 2017, 39(10): 939-946. |
[13] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[14] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[15] | 曾笑威, 刘翠翠, 韩凝, 边红武, 朱睦元. 植物自噬的调控因子和受体蛋白研究进展[J]. 遗传, 2016, 38(7): 644-650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: