[1] | Qu HZ, Fang XD . A brief review on the human encyclopedia of DNA Elements (ENCODE) project. Genomics Prot Bioinform, 2013,11(3):135-141. | [2] | Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE . Integrating common and rare genetic variation in diverse human populations. Nature, 2010,467(7311):52-58. | [3] | Xie BB, Yang YD, Ding N, Fang XD . Identification of disease targets for precision medicine by integrative analysis of multi-omics data. Hereditas (Beijing), 2015,37(7):655-663. | [3] | 谢兵兵, 杨亚东, 丁楠, 方向东 . 整合分析多组学数据筛选疾病靶点的精准医学策略. 遗传, 2015,37(7):655-663. | [4] | Goldberg Y . A primer on neural network models for natural language processing. Comput Sci, 2015, . | [5] | Szeliski R . Computer vision : algorithms and applications. Heidelberg: Springer-Verlag Berlin, 2010. | [6] | Russell SJ, Norvig PN . Artificial intelligence: A modern approach. Prentice Hall. Appl Mech Mater, 1995,263(5):2829-2833. | [7] | Kim YS, Street WN, Menczer F . Evolutionary model selection in unsupervised learning. Intell Data Anal, 2002,6(6):531-556. | [8] | Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR . Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA, 2001,98(26):15149-15154. | [9] | Zhang T, Yang YD, Fang XD . Transcriptome alternative splicing analysis applied to precision medical research. J Dev Med, 2016,4(2):78-84. | [9] | 张韬, 杨亚东, 方向东 . 应用于精准医学研究的转录组可变剪接分析. 发育医学电子杂志, 2016,4(2):78-84. | [10] | Li P, He N, Li YM, Fang XD . Progress in single cell transcriptome analysis and developmental biology. J Dev Med, 2017,5(1):28-34. | [10] | 李品, 贺宁, 李艳明, 方向东 . 单细胞转录组数据分析与发育生物学研究进展. 发育医学电子杂志, 2017,5(1):28-34. | [11] | Chun H, Kele? S . Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J R Stat Soc Series B Stat Methodol, 2010,72(1):3-25. | [12] | Isabelle G, André E . An introduction to variable and feature selection. J Mach Learn Res, 2003,3(7-8):1157-1182. | [13] | Awada W, Khoshgoftaar TM, Dittman D, Wald R, Napolitano A . A review of the stability of feature selection techniques for bioinformatics data. Proceedings of the 2012 IEEE 13th International Conference on Information Reuse and Integration, IRI 2012,2012:356-363. | [14] | Saeys Y, Inza I, Larra?aga P . A review of feature selection techniques in bioinformatics. Bioinformatics, 2007,23(19):2507-2517. | [15] | Jiang Y, Shi X, Zhao Q, Krauthammer M, Rothberg BEG, Ma S . Integrated analysis of multidimensional omics data on cutaneous melanoma prognosis. Genomics, 2016,107(6):223-230. | [16] | Ma S, Huang J . Penalized feature selection and classification in bioinformatics. Brief Bioinform, 2008,9(5):392-403. | [17] | Fogarty J, Baker RS, Hudson SE . Case studies in the use of ROC curve analysis for sensor-based estimates in human computer interaction. In Proceedings of Graphics Interface, 2005. | [18] | Raykar V, Steck H, Krishnapuram B, Dehing-Oberije C, Lambin P . On ranking in survival analysis: bounds on the concordance index. Adv Neural Inform Proc Sys, 20:1209-1216. | [19] | Cortes C, Vapnik V . Support-vector networks. Mach Learn, 1995,20(3):273-297. | [20] | Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D . Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000,16(10):906-914. | [21] | Best Myron G, Sol N, Kooi I, Tannous J, Westerman Bart A, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit Egbert F, Verheul Henk M, Noske David P, Reijneveld Jaap C, Nilsson RJonas A, Tannous Bakhos A, Wesseling P, Wurdinger T . RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Canc Cell, 2015,28(5):666-676. | [22] | Narasimhan H, Agarwal S . SVM pAUC tight: a new support vector method for optimizing partial AUC based on a tight convex upper bound. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2013: 167-175. | [23] | Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU, Thayakumar A, Surendran R, Babu GK, Shenoy AM, Kuriakose MA, Bergthold G, Horowitz P, Loda M, Beroukhim R, Agarwal S, Sengupta S, Sundaram M, Majumder PK . Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun, 2015,6:6169. | [24] | Han L, Yuan Y, Zheng S, Yang Y, Li J, Edgerton ME, Diao L, Xu Y, Verhaak RGW, Liang H . The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant tumour subtypes. Nat Commun, 2014,5:3963. | [25] | Paik ES, Choi HJ, Kim TJ, Lee JW, Kim BG, Bae DS, Choi CH . Molecular signature for lymphatic invasion associated with survival of epithelial ovarian cancer. Cancer Res and Treat, 2017,50(2):461-473. | [26] | Cai X, Han X, Zhang S, Luo Y, Chen Y, Ji L . Age at diagnosis and C-peptide level are associated with diabetic retinopathy in Chinese. PLoS One, 2014,9(3):e91174. | [27] | Best MG, Sol N, In ‘t Veld SGJG, Vancura A, Muller M, Niemeijer A-LN, Fejes AV, Tjon Kon Fat L-A, Huis In ‘t Veld AE, Leurs C, Le Large TY, Meijer LL, Kooi IE, Rustenburg F, Schellen P, Verschueren H, Post E, Wedekind LE, Bracht J, Esenkbrink M, Wils L, Favaro F, Schoonhoven JD, Tannous J, Meijers-Heijboer H, Kazemier G, Giovannetti E, Reijneveld JC, Idema S, Killestein J, Heger M, de Jager SC, Urbanus RT, Hoefer IE, Pasterkamp G, Mannhalter C, Gomez-Arroyo J, Bogaard H-J, Noske DP, Vandertop WP, van den Broek D, Ylstra B, Nilsson RJA, Wesseling P, Karachaliou N, Rosell R, Lee-Lewandrowski E, Lewandrowski KB, Tannous BA, de Langen AJ, Smit EF, van den Heuvel MM, Wurdinger T . Swarm intelligence-enhanced detection of non-small- cell lung cancer using tumor-educated platelets. Cancer Cell, 2017, 32(2): 238- 252.e9. | [28] | Yu ZW, Chen HT, You J, Liu JM, Wong HS, Han G, Li L . Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data. IEEE/ACM Trans Comput Biol Bioinform, 2015,12(4):887-901. | [29] | Mahata P . Exploratory consensus of hierarchical clusterings for melanoma and breast cancer. IEEE/ACM Trans Comput Biol Bioinform, 2010,7(1):138-152. | [30] | Wahdan P, Saad A, Shoukry A . Automated breast tumour detection in ultrasound images using support vector machine and ensemble classification. J Biomed Eng Biosci, 2016,3. | [31] | Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, Yi S, Shi W, Quan Q, Li K, Zheng L, Zhang H, Caughey BA, Zhao Q, Hou J, Zhang R, Xu Y, Cai H, Li G, Hou R, Zhong Z, Lin D, Fu X, Zhu J, Duan Y, Yu M, Ying B, Zhang W, Wang J, Zhang E, Zhang C, Li O, Guo R, Carter H, Zhu JK, Hao X, Zhang K . Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater, 2017,16(11):1155-1161. | [32] | Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, Kristiansen K . The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 2017,8(1):845. | [33] | Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S . Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017,542(7660):686. | [34] | Kooi T, Litjens G, Van GB, Gubern-Mérida A, Sánchez CI, Mann R, den HA, Karssemeijer N . Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal, 2017,35:303-312. | [35] | Liu Y, Gadepalli K, Norouzi M, Dahl GE, Kohlberger T, Boyko A, Venugopalan S, Timofeev A, Nelson PQ, Corrado GS, Hipp JD, Peng LL, Stumpe MC . Detecting cancer metastases on gigapixel pathology images. 2017, . | [36] | Shen W, Zhou M, Yang F, Yang C, Tian J . Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging, 2015,24:588-599. | [37] | Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature, 2014,511(7511):543-550. | [38] | Marinelli RJ, Montgomery K, Liu CL, Shah NH, Prapong W, Nitzberg M, Zachariah ZK, Sherlock GJ, Natkunam Y, West RB, van de Rijn M, Brown PO, Ball CA . The stanford tissue microarray database. Nucleic Acids Research, 2008,36(Database issue):D871-D877. | [39] | Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, Snyder M . Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun, 2016,7:12474. | [40] | Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A . Conditional variable importance for random forests. BMC Bioinf, 2008,9:307. | [41] | Diaz-Uriarte R . GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinf, 2007,8(1):328. | [42] | EKrishna SM, Moxon JV, Golledge J . A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci, 2015,16(5):11294-22322. | [43] | Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ . Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science, 2014,341(6143):295-298. | [44] | Charalampous K, Gasteratos A . On-line deep learning method for action recognition. Patt Anal Appl, 2016,19(2):337-354. | [45] | Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, Mok V, Shi L, Heng PA . Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging, 2016,35(5):1182-1195. | [46] | Riccardo M, Li L, Kidd BA, Dudley JT . Deep Patient: An unsupervised representation to predict the future of patients from the electronic health records. Sci Rep, 2016,6:26094. | [47] | S Somashekhar S P, Kumar R, Kumar A, Patil P, Rauthan A . 551PD validation study to assess performance of IBM cognitive computing system Watson for oncology with manipal multidisciplinary tumour board for 1000 consecutive cases: An Indian experience. Annal Oncol, 2016, 27(suppl 9), . | [48] | Herath DH, Wilsoning D, Ramos E, Morstyn G . Assessing the natural language processing capabilities of IBM Watson for oncology using real australian lung cancer cases. 2016. | [49] | Somashekhar SP, Sepúlveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit CK, Rauthan A, Arun NK, Patil P, Rhee K, Ramya Y . Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol, 2018,29(2):418-423. | [50] | van der Heijden AA, Abramoff MD, Verbraak F, Van MH, Liem A, Nijpels G . Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol, 2018,96(1):63-68. | [51] | Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Duvernoy WF, Froelicher VF, Mark DB, Marwick TH, McCallister BD, Thompson PD, Winters WL, Yanowitz FG, Ritchie JL, Gibbons RJ, Cheitlin MD, Eagle KA, Gardner TJ, Garson A, Lewis RP, O'Rourke RA, Ryan TJ . ACC/AHA Guidelines for Exercise Testing. A report of the American college of cardiology/American heart association task force on practice guidelines (committee on exercise testing). J Am Coll Cardiol, 1997,30(1):260-311. | [52] | Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, Lee IM, Lichtenstein AH, Loria CM, Millen BE, Nonas CA, Sacks FM, Smith SC Jr, Svetkey LP, Wadden TA, Yanovski SZ, Kendall KA, Morgan LC, Trisolini MG, Velasco G, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF . 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. Journal of the American College of Cardiology, 2014,63(25):2960-2984. | [53] | Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N . Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One, 2017,12(4):e0174944. |
|