遗传 ›› 2015, Vol. 37 ›› Issue (2): 128-139.doi: 10.16288/j.yczz.14-351
胡清霞,高昂,曾炜佳,王妍馨,董金堂,朱正茂
收稿日期:
2014-10-14
修回日期:
2015-01-05
出版日期:
2015-02-20
发布日期:
2015-01-19
通讯作者:
朱正茂,博士,副教授,研究方向:肿瘤发生和发展的分子机制研究,核膜组装与细胞周期调控。E-mail: zhuzhengmao@nankai.edu.cn
E-mail:zhuzhengmao@nankai.edu.cn
作者简介:
胡清霞,在读硕士,专业方向:细胞生物学。E-mail: 1150724550@qq.com
基金资助:
Qingxia Hu,Ang Gao,Weijia Zeng,Yanxin Wang,Jintang Dong,Zhengmao Zhu
Received:
2014-10-14
Revised:
2015-01-05
Online:
2015-02-20
Published:
2015-01-19
摘要: 在高等动物细胞开放式有丝分裂过程中,细胞核膜会发生高度有序的周期性去组装和装配的动态变化。近年的研究结果表明是LEM家族蛋白成员通过与BAF因子相互作用介导了内核膜、核纤层蛋白以及染色体之间的相互作用。LEM蛋白、核纤层蛋白以及BAF因子直接相互作用形成的三元复合体在结构与功能上是相互依赖的,在此结构与功能上组成的网络体系是形成细胞核的一些基本生物学过程的重要条件。该复合体在调控有丝分裂M期后期和末期染色体的正常分离、有丝分裂后核膜的重组装,细胞分裂间期细胞核及核膜形态维持,调控DNA复制和DNA损伤修复,调节基因表达和信号通路以及逆转录病毒感染等方面发挥着重要的生物学功能。并且LEM蛋白相关基因的异常对核纤层疾病和肿瘤的发生发展具有重要的影响。文章主要针对LEM蛋白家族成员的结构以及功能研究进展进行了详细的综述。
胡清霞,高昂,曾炜佳,王妍馨,董金堂,朱正茂. 高等哺乳动物LEM结构域蛋白家族的研究进展[J]. 遗传, 2015, 37(2): 128-139.
Qingxia Hu,Ang Gao,Weijia Zeng,Yanxin Wang,Jintang Dong,Zhengmao Zhu. Structure and biological functions of mammalian LEM-Domain proteins[J]. HEREDITAS(Beijing), 2015, 37(2): 128-139.
[1] Schirmer EC, Florens L, Guan TL, Yates JRⅢ, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science , 2003, 301(5638): 1380-1382. [2] Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, de lasHeras J, Zuleger N, Kerr ARW, Florens L, Schirmer EC. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteomics , 2011, 10(1): M110.003129. [3] Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EA, Malik P, Zuleger N, Goncharevich A, de Las Heras J, Kelly DA, Kerr ARW, Florens L, Schirmer EC. The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol Cell Proteomics , 2010, 9(12): 2571-2585. [4] Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem , 2000, 275(7): 4840-4847. [5] Cai ML, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J , 2001, 20(16): 4399-4407. [6] Shumaker DK, Lee KK, Tanhehco YC, Craigie R, Wilson KL. LAP2 binds to BAF?DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J , 2001, 20(7): 1754-1764. [7] Cai ML, Huang Y, Suh JY, Louis JM, Ghirlando R, Craigie R, Clore GM. Solution NMR structure of the barrier- to-autointegration factor-emerin complex. J Biol Chem , 2007, 282(19): 14525-14535. [8] Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopasa L, Ehrlich V, Jiricny J, Gotzmann J, Knasmüller S, Foisner R. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo. J Cell Sci , 2012, 125(Pt 4): 1048-1057. [9] Asencio C, Davidson IF, Santarella-Mellwig R, Ly-Hartig TB, Mall M, Wallenfang MR, Mattaj IW, Gorjanacz M. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell , 2012, 150(1): 122-135. [10] Zheng RL, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci USA , 2000, 97(16): 8997-9002. [11] Mansharamani M, Wilson KL. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J Biol Chem , 2005, 280(14): 13863-13870. [12] Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol , 2011, 12(11): 695-708. [13] Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci USA , 2003, 100(8): 4598-4603. [14] Hirano Y, Segawa M, Ouchi FS, Yamakawa Y, Furukawa K, Takeyasu K, Horigome T. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a xenopus egg cell-free system. J Biol Chem , 2005, 280(48): 39925-39933. [15] Burke B, Stewart CL. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol , 2013, 14(1): 13-24. [16] Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin. Nucleus-Austin , 2013, 4(4): 298-314. [17] Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: Truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopuslaevis extracts. J Cell Biol , 1999, 144(6): 1083-1096. [18] Furukawa K, Fritze CE, Gerace L. The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain. J Biol Chem , 1998, 273(7): 4213-4219. [19] Gonzalez Y, Saito A, Sazer S. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina. Nucleus , 2012, 3(1): 60-76. [20] Huber MD, Guan T, Gerace L. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol Cell Biol , 2009, 29(21): 5718-5728. [21] Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL, Hiraoka Y. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. Eur J Biochem , 2004, 271(5): 1035-1045. [22] Holaska JM, Lee KK, Kowalski AK, Wilson KL. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem , 2003, 278(9): 6969-6975. [23] Demmerle J, Koch AJ, Holaska JM. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem , 2012, 287(26): 22080-22088. [24] Osada S, Ohmori SY, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development , 2003, 130(9): 1783-1794. [25] Margalit A, Segura-Totten M, Gruenbaum Y, Wilson KL. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci USA , 2005, 102(9): 3290-3295. [26] Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell , 2000, 11(11): 3937-3947. [27] Dreger M, Otto H, Neubauer G, Mann M, Hucho F. Identification of phosphorylation sites in native lamina-associated polypeptide 2β. Biochemistry , 1999, 38(29): 9426-9434. [28] Gajewski A, Csaszar E, Foisner R. A phosphorylation cluster in the chromatin-binding region regulates chromosome association of LAP2α. J Biol Chem , 2004, 279(34): 35813-35821. [29] Ellis JA, Craxton M, Yates JR, Kendrick-Jones J. Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci , 1998, 111 (Pt 6): 781-792. [30] Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell , 1993, 73(7): 1267-1279. [31] Molitor TP, Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol Biol Cell , 2014, 25(6): 891-903. [32] Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell , 2006, 17(5): 2451-2464. [33] Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci , 2004, 117(25): 6117-6128. [34] Margalit A, Vlcek S, Gruenbaum Y, Foisner R. Breaking and making of the nuclear envelope. J Cell Biochem , 2005, 95(3): 454-465. [35] Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF- directed nuclear envelope assembly. J Cell Sci , 2008, 121(Pt 15): 2540-2554. [36] Clever M, Funakoshi T, Mimura Y, Takagi M, Imamoto N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells. Nucleus , 2012, 3(2): 187-199. [37] Martins S, Eikvar S, Furukawa K, Collas P. HA95 and LAP2βmediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J Cell Biol , 2003, 160(2): 177-188. [38] Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong MQ, Ruse C, Yates JR,Ⅲ, Russell P, Fuchs RP, McGowan CH, Gaillard PHL. Human SLX4 is a holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell , 2009, 138(1): 78-89. [39] Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ, Harper JW. Mammalian BTBD12/SLX4 assembles a holliday junction resolvase and is required for DNA repair. Cell , 2009, 138(1): 63-77. [40] Pereira AR, Reed P, Veiga H, Pinho MG. The Holliday junction resolvase RecU is required for chromosome segregation and DNA damage repair in Staphylococcus aureus . BMC Microbiol , 2013, 13: 18. [41] Sarbajna S, Davies D, West SC. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev , 2014, 28(10): 1124-1136. [42] Dittrich CM, Kratz K, Sendoel A, Gruenbaum Y, Jiricny J, Hengartner MO. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C . elegans . PLoS One , 2012, 7(2): e24555. [43] deOca RM, Shoemaker CJ, Gucek M, Cole RN, Wilson KL. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One , 2009, 4(9): e7050. [44] Berk JM, Simon DN, Jenkins-Houk CR, Westerbeck JW, Grønning-Wang LM, Carlson CR, Wilson KL. The molecular basis of emerin-emerin and emerin-BAF interactions. J Cell Sci , 2014, 127(Pt 18): 3956-3969. [45] Brachner A, Foisner R. Lamina-associated polypeptide (LAP) 2α and other LEM proteins in cancer biology. Adv Exp Med Biol , 2014, 773: 143-163. [46] Li Z, Zhu YZ, Zhai YJ, Castroagudin MR, Bao YF, White TE, Glavy JS. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1. Biochim Biophys Acta , 2013, 1833(12): 3338-3345. [47] Deroyer C, Renert AF, Merville MP, Fillet M. New role for EMD (emerin), a key inner nuclear membrane protein, as an enhancer of autophagosome formation in the C16-ceramide autophagy pathway. Autophagy , 2014, 10(7): 1229- 1240. [48] Versaevel M, Braquenier JB, Riaz M, Grevesse T, Lantoine J, Gabriele S. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci Rep , 2014, 4: 7362. [49] Cain NE, Starr DA. SUN proteins and nuclear envelope spacing. Nucleus , 2014: 0. doi:10.4161/19491034.2014. 990857 [50] Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus , 2013, 4(1): 29-36. [51] Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM. Nesprin-1α self-associates and binds directly to emerin and laminA in vitro . FEBS Lett , 2002, 525(1-3): 135-140. [52] Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem , 2010, 285(5): 3487-3498. [53] Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol , 2014, 16(4): 376-381. [54] Lin CW, Engelman A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes. J Virol , 2003, 77(8): 5030-5036. [55] Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. Functional Disruption of the Moloney Murine Leukemia Virus Preintegration Complex by Vaccinia-related Kinases. J Biol Chem , 2010, 285(31): 24032-24043. [56] Jacque JM, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature , 2006, 441(7093): 641-645. [57] Chen HM, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci USA , 1998, 95(26): 15270-15274. [58] Stewart CL, Roux KJ, Burke B. Blurring the boundary: The nuclear envelope extends its reach. Science , 2007, 318(5855): 1408-1412. [59] Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD. Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep , 2001, 2(10): 920-925. [60] Zullo JM, Demarco IA, Piqué-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell , 2012, 149(7): 1474-1487. [61] Liu HS, Lu ZG, Miki Y, Yoshida K. Protein kinase C δ induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol , 2007, 27(24): 8480-8491. [62] Renert AF, Leprince P, Dieu M, Renaut J, Raes M, Bours V, Chapelle JP, Piette J, Merville MP, Fillet M. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res , 2009, 8(10): 4810-4822. [63] Sarras H, AlizadehAzami S, McPherson JP. In search of a function for BCLAF1. Sci World J , 2010, 10: 1450-1461. [64] McPherson JP, Sarras H, Lemmers B, Tamblyn L, Migon E, Matysiak-Zablocki E, Hakem A, Azami SA, Cardoso R, Fish J, Sanchez O, Post M, Hakem R. Essential role for Bclaf1 in lung development and immune system function. Cell Death Differ , 2009, 16(2): 331-339. [65] Wagner N, Krohne G. LEM-Domain proteins: new insights into lamin-interacting proteins. Int Rev Cytol , 2007, 261: 1-46. [66] Politz JCR, Pederson T. Tracking nuclear poly(A) RNA movement within and among speckle nuclear bodies and the surrounding nucleoplasm. Methods Mol Biol , 2013, 1042: 61-71. [67] Wilkinson FL, Holaska JM, Zhang Z, Sharma A, Manilal S, Holt I, Stamm S, Wilson KL, Morris GE. Emerin interacts in vitro with the splicing-associated factor, YT521-B. Eur J Biochem , 2003, 270(11): 2459-2466. [68] Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G. Nuclear membrane protein LAP2β mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci , 2001, 114(Pt 18): 3297-3307. [69] Holaska JM, Wilson KL. Multiple roles for emerin: implications for Emery-Dreifuss muscular dystrophy. Anat Rec A: Discov Mol Cell Evol Biol , 2006, 288(7): 676-680. [70] Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FCS, Broers JLV, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ. The inner nuclear membrane protein emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO J , 2006, 25(14): 3275-3285. [71] Stubenvoll A, Rice M, Wietelmann A, Wheeler M, Braun T. Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum Mol Genet , 2014, doi:10.1093/hmg/ddu498. [72] Mull A, Kim G, Holaska JM. LMO7-null mice exhibit phenotypes consistent with emery-dreifuss muscular dystrophy. Muscle Nerve , 2014, doi:10.1002/mus.24286. [73] Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J Cell Sci , 2011, 124(Pt 10): 1691-1702. [74] Lin ST, Zhang LY, Lin XY, Zhang LC, Garcia VE, Tsai CW, Ptá?ek L, Fu YH. Nuclear envelope protein MAN1 regulates clock through BMAL1. Elife , 2014, 3: e02981. [75] Bourgeois B, Gilquin B, Tellier-Lebegue C, Ostlund C, Wu W, Perez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal , 2013, 6(280): ra49. [76] Mercuri E, Poppe M, Quinlivan R, Messina S, Kinali M, Demay L, Bourke J, Richard P, Sewry C, Pike M, Bonne G, Muntoni F, Bushby K. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery-Dreifuss variant. Arch Neurol , 2004, 61(5): 690-694. [77] Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet , 1994, 8(4): 323-327. [78] Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature , 2013, 497(7450): 507-511. [79] Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat , 2005, 26(6): 566-574. [80] Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJT, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet , 2004, 36(11): 1213-1218. [81] Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C, Sher T, Gentry-Maharaj A, Wozniak E, Tsai YY,Weidhaas J, Paik D, Van Den Berg DJ, Stram DO, PearceCL, Wu AH, Brewster W, Anton-Culver H, Ziogas A, Narod SA, Levine DA, Kaye SB, Brown R, Paul J, Flanagan J, Sieh W, McGuire V, Whittemore AS, Campbell I, Gore ME, Lissowska J, Yang HP, Medrek K, Gronwald J, Lubinski J, Jakubowska A, Le ND, Cook LS, Kelemen LE, Brook-Wilson A, Massuger LFAG, Kiemeney LA, Aben KKH, van Altena AM, Houlston R, Tomlinson I, Palmieri RT, Moorman PG, Schildkraut J, Iversen ES, Phelan C, Vierkant RA, Cunningham JM, Goode EL, Fridley BL, Kruger-Kjaer S, Blaeker J, Hogdall E, Hogdall C, Gross J, Karlan BY, Ness RB, Edwards RP, Odunsi K, Moyisch KB, Baker JA, Modugno F, Heikkinenen T, Butzow R, Nevanlinna H, Leminen A, Bogdanova N, Antonenkova N, Doerk T, Hillemanns P, Dürst M, Runnebaum I, Thompson PJ, Carney ME, Goodman MT, Lurie G, Wang-Gohrke S, Hein R, Chang-Claude J, Rossing MA, Cushing-Haugen KL, Doherty J, Chen C, Rafnar T, Besenbacher S, Sulem P, Stefansson K, Birrer MJ, Terry KL, Hernandez D, Cramer DW, Vergote I, Amant F, Lambrechts D, Despierre E, Fasching PA, Beckmann MW, Thiel FC, Ekici AB, Chen XQ, the Australian Ovarian Cancer Study Group, the Australian Cancer Study (Ovarian Cancer), on behalf of the Ovarian Cancer Association Consortium, Johnatty SE, Webb PM, Beesley J, Chanock S, Garcia-Closas M, Sellers T, Easton DF, Berchuck A, Chenevix-Trench G, Pharoah PDP, Gayther SA. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet , 2010, 42(10): 880-884. [82] Antoniou AC, Wang XS, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Healey S, Morrison J, Kartsonaki C, Lesnick T, Ghoussaini M, Barrowdale D, EMBRACE, Peock S, Cook M, Oliver C, Frost D, Eccles D, Evans DG, Eeles R, Izatt L, Chu C, Douglas F, Paterson J, Stoppa-Lyonnet D, Houdayer C, Mazoyer S, Giraud S, Lasset C, Remenieras A, Caron O, Hardouin A, Berthet P, GEMO Study Collaborators, Hogervorst FBL, Rookus MA, Jager A, van den Ouweland A, Hoogerbrugge N, van der Luijt RB, Meijers-Heijboer H, García EBG, HEBON, Devilee P, Vreeswijk MPG, Lubinski J, Jakubowska A, Gronwald J, Huzarski T, Byrski T, Górski B, Cybulski C, Spurdle AB, Holland H, kConFab, Goldgar DE, John EM, Hopper JL, Southey M, Buys SS, Daly MB, Terry MB, Schmutzler RK, Wappenschmidt B, Engel C, Meindl A, Preisler-Adams S, Arnold N, Niederacher D, Sutter C, Domchek SM, Nathanson KL, Rebbeck T, Blum JL, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Blank SV, Friedman E, Kaufman B, Laitman Y, Milgrom R, Andrulis IL, Glendon G, Ozcelik H, Kirchhoff T, Vijai J, Gaudet MM, Altshuler D, Guiducci C, SWE-BRCA, Loman N, Harbst K, Rantala J, Ehrencrona H, Gerdes AM, Thomassen M, Sunde L, Peterlongo P, Manoukian S, Bonanni B, Viel A, Radice P, Caldes T, de la Hoya M, Singer CF, Fink-Retter A, Greene MH, Mai PL, Loud JT, Guidugli L, Lindor NM, Hansen TVO, Nielsen FC, Blanco I, Lazaro C, Garber J, Ramus SJ, Gayther SA, Phelan C, Narod S, Szabo CI, MOD SQUAD, Benitez J, Osorio A, Nevanlinna H, Heikkinen T, Caligo MA, Beattie MS, Hamann U, Godwin AK, Montagna M, Casella C, Neuhausen SL, Karlan BY, Tung N, Toland AE, Weitzel J, Olopade O, Simard J, Soucy P, Rubinstein WS, Arason A, Rennert G, Martin NG, Montgomery GW, Chang-Claude J, Flesch-Janys D, Brauch H, GENICA, Severi G, Baglietto L, Cox A, Cross SS, Miron P, Gerty SM, Tapper W, Yannoukakos D, Fountzilas G, Fasching PA, Beckmann MW, dos Santos Silva I, Peto J, Lambrechts D, Paridaens R, Rüdiger T, Försti A, Winqvist R, Pylkäs K, Diasio RB, Lee AM, Eckel-Passow J, Vachon C, Blows F, Driver K, Dunning A, Pharoah PPD, Offit K, Pankratz VS, Hakonarson H, Chenevix-Trench G, Easton DF, Couch FJ. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet , 2010, 42(10): 885-892. |
[1] | 程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[2] | 魏永永,侯静,唐文如,罗瑛. p53与Ras协同及其在肿瘤发生中的作用[J]. 遗传, 2012, 34(12): 1513-1521. |
[3] | 张如旭,郭鹏,任志军,赵国华,刘三妹,刘婷,资晓宏,胡正茂,夏昆,唐北沙. LITAF、RAB7、LMNA和MTMR2基因在中国人腓骨肌萎缩症患者的突变分析[J]. 遗传, 2010, 32(8): 817-823. |
[4] | 张振武,安洋,滕春波. miR-17-92基因簇microRNAs对哺乳动物器官发育及肿瘤发生的调控[J]. 遗传, 2009, 31(11): 1094-1100. |
[5] | 吴易阳 李岭. MicroRNA与肿瘤相关的信号转导通路[J]. 遗传, 2007, 29(12): 1419-1428. |
[6] | 张玮玮,黄惠芳,李庆伟,马飞. Y-box结合蛋白功能及对肿瘤发生的影响[J]. 遗传, 2006, 28(9): 1153-1160. |
[7] | 李艳凤,张强,朱大海. 泛素介导的蛋白质降解与肿瘤发生[J]. 遗传, 2006, 28(12): 1591-1591~1596. |
[8] | 屈艾,汪承润,薄军. 稀土元素钬对蚕豆的细胞毒性和遗传毒性研究[J]. 遗传, 2004, 26(2): 195-201. |
[9] | 钱水明,余其兴,. 金线蛙染色体G显带的方法学探索 [J]. 遗传, 2002, 24(5): 555-558. |
[10] | 刘榜,李奎,彭中镇,赵书红,刘学芹,周艳琴,何锋. 家猪减数分裂粗线期二价体与有丝分裂中期染色体的比较研究[J]. 遗传, 1999, 21(5): 24-511. |
[11] | PR Unnikrishna Pillai,Padma Nambisan,VPN Nampoori,CPG Vallabhan. 激光及γ射线对有丝分裂染色体畸变感应现象的比较[J]. 遗传, 1997, 19(5): 5-9. |
[12] | 刘登才,颜济,杨俊良. 节节麦5D染色体上随体多态性的一个证据[J]. 遗传, 1997, 19(4): 5-7. |
[13] | 幸亨泰,梁万福,刘世倩. 沙打旺有丝分裂染色体形态变化的观察[J]. 遗传, 1995, 17(4): 35-36. |
[14] | 汪旭,李雯,周汝敏,曹能,刘素清. 微核直径测试作为非整倍体诱发剂的分析手段[J]. 遗传, 1993, 15(3): 16-19. |
[15] | 李凤荣,张自立. 蚕豆根尖细胞分裂同步化的方法[J]. 遗传, 1990, 12(2): 40-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: