遗传 ›› 2024, Vol. 46 ›› Issue (10): 886-896.doi: 10.16288/j.yczz.24-086
• 技术与方法 • 上一篇
收稿日期:
2024-06-15
修回日期:
2024-08-01
出版日期:
2024-08-08
发布日期:
2024-08-08
通讯作者:
杜志强,博士,教授,研究方向:动物遗传育种与繁殖。E-mail: zhqdu@yangtzeu.edu.cn作者简介:
郑慧怡,硕士研究生,专业方向:肠道微生物与代谢。E-mail: z15616428557@163.com郑慧怡和吴华煊并列第一作者。
基金资助:
Huiyi Zheng(), Huaxuan Wu(
), Zhiqiang Du(
)
Received:
2024-06-15
Revised:
2024-08-01
Published:
2024-08-08
Online:
2024-08-08
Supported by:
摘要:
近年来,统计学和机器学习方法被广泛用于分析人体肠道微生物宏基因组与代谢性疾病之间的关系,这对于微生物群落的功能注释和开发具有重要意义。本研究提出了一种新的可推广的肠道宏基因组图像增强和深度学习框架,用于人类代谢性疾病的分类预测。将3个代表性人类肠道宏基因组数据集中的每个数据样本分别转换为图像并进行数据增强,输入逻辑回归(logistic regression, LR)、支持向量机(support vector machine, SVM)、贝叶斯网络(Bayesian network, BN)和随机森林(random forest, RF)机器学习模型以及多层感知机(muti-layer perception, MLP)和卷积神经网络(convolutional neural network, CNN)深度学习模型。使用准确率(accuracy, A)、精确率(precession, P)、召回率(recall, R)、F1分数(F1-score)和ROC(receiver operating characteristic)曲线下面积(area under the curve, AUC)5个指标以及10折交叉验证整体评估模型疾病预测的精度性能。结果显示:MLP模型的整体表现优于CNN、LR、SVM、BN、RF以及PopPhy-CNN方法,且经过数据增强(随机旋转和添加椒盐噪声)后,MLP和CNN的模型性能均有进一步提升。MLP模型进行疾病预测的准确率进一步提高了4%~11%,F1提高了1%~6%,AUC提高了5%~10%。以上结果表明,人类肠道宏基因组图像增强和深度学习可以准确地提取微生物群特征,有效预测宿主疾病表型。本研究中使用的源代码和数据集均公开发表在Github中:
郑慧怡, 吴华煊, 杜志强. 肠道宏基因组图像增强和深度学习改善代谢性疾病分类预测精度[J]. 遗传, 2024, 46(10): 886-896.
Huiyi Zheng, Huaxuan Wu, Zhiqiang Du. Gut metagenome-derived image augmentation and deep learning improve prediction accuracy of metabolic disease classification[J]. Hereditas(Beijing), 2024, 46(10): 886-896.
表2
机器学习和深度学习模型的结果精确率、召回率和F1分数"
数据集 | 指标 | MLP | CNN | BN | LR | SVM | RF | PopPhy- CNN | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Image Augmented | Image | Original | Image Augmented | Image | Original | |||||||
Hepatocirrhosis | P | 1.00 | 1.00 | 0.85 | 0.90 | 0.86 | 0.85 | 0.75 | 0.73 | 0.73 | 0.85 | |
R | 0.85 | 0.85 | 0.79 | 0.90 | 0.92 | 0.79 | 0.86 | 0.79 | 0.71 | 0.79 | ||
F1 | 0.89 | 0.88 | 0.80 | 0.90 | 0.90 | 0.80 | 0.81 | 0.76 | 0.72 | 0.81 | ||
Obesity | P | 0.81 | 0.74 | 0.77 | 0.79 | 0.86 | 0.67 | 0.54 | 0.71 | 0.65 | 0.63 | |
R | 0.91 | 0.91 | 0.73 | 0.94 | 0.78 | 0.97 | 0.45 | 0.73 | 1.00 | 0.94 | ||
F1 | 0.87 | 0.81 | 0.71 | 0.89 | 0.78 | 0.79 | 0.42 | 0.67 | 0.79 | 0.74 | 0.587 | |
T2D | P | 0.66 | 0.69 | 0.66 | 0.69 | 0.65 | 0.82 | 0.68 | 0.60 | 0.61 | 0.59 | |
R | 0.74 | 0.80 | 0.60 | 0.74 | 0.89 | 0.40 | 0.60 | 0.53 | 0.67 | 0.60 | ||
F1 | 0.71 | 0.75 | 0.62 | 0.72 | 0.78 | 0.49 | 0.57 | 0.56 | 0.64 | 0.59 | 0.611 |
表3
机器学习和深度学习模型交叉验证的准确率"
数据集 | MLP | CNN | SVM | RF | BN | LR | ||||
---|---|---|---|---|---|---|---|---|---|---|
Image Augmented | Image | Original | Image Augmented | Image | Original | |||||
Hepatocirrhosis | 0.921±0.021 | 0.908±0.039 | 0.835±0.042 | 0.890±0.043 | 0.888±0.047 | 0.808±0.034 | 0.738±0.080 | 0.688±0.032 | 0.862±0.055 | 0.765±0.047 |
Obesity | 0.867±0.050 | 0.720±0.026 | 0.676±0.016 | 0.841±0.044 | 0.773±0.054 | 0.678±0.028 | 0.561±0.037 | 0.655±0.016 | 0.639±0.032 | 0.573±0.054 |
T2D | 0.686±0.010 | 0.682±0.054 | 0.657±0.039 | 0.708±0.010 | 0.708±0.029 | 0.656±0.034 | 0.576±0.043 | 0.620±0.043 | 0.652±0.057 | 0.618±0.035 |
[1] |
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 2004, 101(44): 15718-15723.
doi: 10.1073/pnas.0407076101 pmid: 15505215 |
[2] | Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031. |
[3] | Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122): 1022-1023. |
[4] | Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415): 242-249. |
[5] | Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021, 19(1): 55-71. |
[6] | Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228): 480-484. |
[7] | Ridaura VK, Faith JJ, Rey FE, Cheng JY, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013, 341(6150): 1241214. |
[8] | Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, Weinberger A, Fu JY, Wijmenga C, Zhernakova A, Segal E. Structural variation in the gut microbiome associates with host health. Nature, 2019, 568(7750): 43-48. |
[9] |
Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, Le Roy CI, Raygoza Garay JA, Finnicum CT, Liu XR, Zhernakova DV, Bonder MJ, Hansen TH, Frost F, Rühlemann MC, Turpin W, Moon JY, Kim HN, Lüll K, Barkan E, Shah SA, Fornage M, Szopinska-Tokov J, Wallen ZD, Borisevich D, Agreus L, Andreasson A, Bang C, Bedrani L, Bell JT, Bisgaard H, Boehnke M, Boomsma DI, Burk RD, Claringbould A, Croitoru K, Davies GE, van Duijn CM, Duijts L, Falony G, Fu JY, van der Graaf A, Hansen T, Homuth G, Hughes DA, Ijzerman RG, Jackson MA, Jaddoe VWV, Joossens M, Jørgensen T, Keszthelyi D, Knight R, Laakso M, Laudes M, Launer LJ, Lieb W, Lusis AJ, Masclee AAM, Moll HA, Mujagic Z, Qibin Q, Rothschild D, Shin H, Sørensen SJ, Steves CJ, Thorsen J, Timpson NJ, Tito RY, Vieira-Silva S, Völker U, Völzke H, Võsa U, Wade KH, Walter S, Watanabe K, Weiss S, Weiss FU, Weissbrod O, Westra HJ, Willemsen G, Payami H, Jonkers DMAE, Arias Vasquez A, de Geus EJC, Meyer KA, Stokholm J, Segal E, Org E, Wijmenga C, Kim HL, Kaplan RC, Spector TD, Uitterlinden AG, Rivadeneira F, Franke A, Lerch MM, Franke L, Sanna S, D'Amato M, Pedersen O, Paterson AD, Kraaij R, Raes J, Zhernakova A. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet, 2021, 53(2): 156-165.
doi: 10.1038/s41588-020-00763-1 pmid: 33462485 |
[10] |
Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu SX, Andreu-Sánchez S, Chen LM, Vila AV, Gacesa R, Sinha T, Collij V, Klaassen MAY, Bolte LA, Gois MFB, Neerincx PBT, Swertz MA, LifeLines Cohort Study, Harmsen HJM, Wijmenga C, Fu JY, Weersma RK, Zhernakova A, Sanna S. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat Genet, 2022, 54(2): 143-151.
doi: 10.1038/s41588-021-00992-y pmid: 35115690 |
[11] |
Chen LM, Zhernakova DV, Kurilshikov A, Andreu- Sánchez S, Wang DM, Augustijn HE, Vich Vila A, Lifelines Cohort Study, Weersma RK, Medema MH, Netea MG, Kuipers F, Wijmenga C, Zhernakova A, Fu JY. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat Med, 2022, 28(11): 2333-2343.
doi: 10.1038/s41591-022-02014-8 pmid: 36216932 |
[12] |
Sanna S, Kurilshikov A, van der Graaf A, Fu JY, Zhernakova A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat Genet, 2022, 54(2): 100-106.
doi: 10.1038/s41588-021-00983-z pmid: 35115688 |
[13] | Kim G, Yoon Y, Park JH, Park JW, Noh MG, Kim H, Park C, Kwon H, Park JH, Kim Y, Sohn J, Park S, Kim H, Im SK, Kim Y, Chung HY, Nam MH, Kwon JY, Kim IY, Kim YJ, Baek JH, Kim HS, Weinstock GM, Cho B, Lee C, Fang S, Park H, Seong JK. Bifidobacterial carbohydrate/ nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect against diet-induced obesity. Microbiome, 2022, 10(1): 188. |
[14] |
Khan S, Hauptman R, Kelly L. Engineering the microbiome to prevent adverse events: challenges and opportunities. Annu Rev Pharmacol Toxicol, 2021, 61: 159-179.
doi: 10.1146/annurev-pharmtox-031620-031509 pmid: 33049161 |
[15] | Giliberti R, Cavaliere S, Mauriello IE, Ercolini D, Pasolli E. Host phenotype classification from human microbiome data is mainly driven by the presence of microbial taxa. PLoS Comput Biol, 2022, 18(4): e1010066. |
[16] |
LaPierre N, Ju CJT, Zhou GY, Wang W. MetaPheno: a critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods, 2019, 166: 74-82.
doi: S1046-2023(18)30362-1 pmid: 30885720 |
[17] | Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine learning strategy for gut microbiome-based diagnostic screening of cardiovascular disease. Hypertension, 2020, 76(5): 1555-1562. |
[18] | Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K, Klammsteiner T, Kolev M, Lahti L, Lopes MB, Moreno V, Naskinova I, Org E, Paciência I, Papoutsoglou G, Shigdel R, Stres B, Vilne B, Yousef M, Zdravevski E, Tsamardinos I, Carrillo de Santa Pau E, Claesson MJ, Moreno-Indias I, Truu J. Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol, 2021, 12: 634511. |
[19] | Holmes S. Successful strategies for human microbiome data generation, storage and analyses. J Biosci, 2019, 44(5): 111. |
[20] | Galloway-Peña J, Hanson B. Tools for analysis of the microbiome. Dig Dis Sci, 2020, 65(3): 674-685. |
[21] | Clausen DS, Willis AD. Evaluating replicability in microbiome data. Biostatistics, 2022, 23(4): 1099-1114. |
[22] | Datta S, Guha S. Statistical Analysis of Microbiome Data. Springer International Publishing, 2021. |
[23] |
Zhang XY, Mallick H, Tang ZX, Zhang L, Cui XQ, Benson AK, Yi NJ. Negative binomial mixed models for analyzing microbiome count data. BMC Bioinformatics, 2017, 18(1): 4.
doi: 10.1186/s12859-016-1441-7 pmid: 28049409 |
[24] |
Zhang XY, Yi NJ. NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. BMC Bioinformatics, 2020, 21(1): 488.
doi: 10.1186/s12859-020-03803-z pmid: 33126862 |
[25] | Liu TT, Xu PR, Du YY, Lu H, Zhao HY, Wang T. MZINBVA: variational approximation for multilevel zero-inflated negative-binomial models for association analysis in microbiome surveys. Brief Bioinform, 2022, 23(1): bbab443. |
[26] |
Curry KD, Nute MG, Treangen TJ. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome. Emerg Top Life Sci, 2021, 5(6): 815-827.
doi: 10.1042/ETLS20210213 pmid: 34779841 |
[27] | Vilne B, Ķibilds J, Siksna I, Lazda I, Valciņa O, Krūmiņa A. Could artificial intelligence/machine learning and inclusion of diet-gut microbiome interactions improve disease risk prediction? case study: coronary artery disease. Front Microbiol, 2022, 13: 627892. |
[28] |
Li Y, Xu ZL, Han WK, Cao HL, Umarov R, Yan AX, Fan M, Chen H, Duarte CM, Li LH, Ho PL, Gao X. HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes. Microbiome, 2021, 9(1): 40.
doi: 10.1186/s40168-021-01002-3 pmid: 33557954 |
[29] |
Cai Y, Gu H, Kenney T. Learning microbial community structures with supervised and unsupervised non-negative matrix factorization. Microbiome, 2017, 5(1): 110.
doi: 10.1186/s40168-017-0323-1 pmid: 28859695 |
[30] |
Chen D, Wang SJ, Zhao ZJ, Ji X, Shen Q, Yu Y, Cui SD, Wang JG, Chen ZY, Wang JY, Guo ZY, Wu PX, Tang GQ. Genomic prediction of pig growth traits based on machine learning. Hereditas(Beijing), 2023, 45(10): 922-932.
doi: 10.16288/j.yczz.23-120 pmid: 37872114 |
陈栋, 王书杰, 赵真坚, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 王金勇, 郭宗义, 吴平先, 唐国庆. 基于机器学习的猪生长性状基因组预测. 遗传, 2023, 45(10): 922-932. | |
[31] |
Liu B, Sträuber H, Saraiva J, Harms H, Silva SG, Kasmanas JC, Kleinsteuber S, Nunes da Rocha U. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. Microbiome, 2022, 10(1): 48.
doi: 10.1186/s40168-021-01219-2 pmid: 35331330 |
[32] | Vangay P, Hillmann BM, Knights D. Microbiome Learning Repo (ML Repo): a public repository of microbiome regression and classification tasks. Gigascience, 2019, 8(5): giz042. |
[33] | Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inform, 2020, 24(10): 2993-3001. |
[34] |
Sharma A, Vans E, Shigemizu D, Boroevich KA, Tsunoda T. DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci Rep, 2019, 9(1): 11399.
doi: 10.1038/s41598-019-47765-6 pmid: 31388036 |
[35] | Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res, 2011, 12(85): 2825-2830. |
[36] | Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin ZM, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai JJ, Chintala S. Pytorch: an imperative style, high-performance deep learning library. Advances in neural information processing systems, 2019, 32: 8024-8035. |
[37] | Zhang XH, Zou YX, Shi W. Dilated convolution neural network with LeakyReLU for environmental sound classification. The 22nd International Conference on Digital Signal Processing (DSP), 2017, 1-5. |
[38] | Wen CL, Sun CJ, Yang N. The concepts and research progress: from heritability to microbiability. Hereditas(Beijing), 2019, 41(11): 1023-1040. |
文超良, 孙从佼, 杨宁. 从遗传力到肠菌力:概念及研究进展. 遗传, 2019, 41(11): 1023-1040. | |
[39] | Szegedy C, Liu W, Jia YQ, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 1-9. |
[40] | He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 770-778. |
[41] | Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90. |
[42] | Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data, 2019, 6(1): 1-48. |
[43] | Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM, 2020, 63(11): 139-144. |
[44] |
Chen XN, Chen DG, Zhao ZM, Balko JM, Chen JC. Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms. Breast Cancer Res, 2021, 23(1): 96.
doi: 10.1186/s13058-021-01474-z pmid: 34629099 |
[45] | Chen XN, Chen DG, Zhao ZM, Zhan J, Ji CR, Chen JC. Artificial image objects for classification of schizophrenia with GWAS-selected SNVs and convolutional neural network. Patterns (NY), 2021, 2(8): 100303. |
[46] | Tang H, Yu XT, Liu R, Zeng T. Vec2image: an explainable artificial intelligence model for the feature representation and classification of high-dimensional biological data by vector-to-image conversion. Brief Bioinform, 2022, 23(2): bbab584. |
[47] | He T, Zhang Z, Zhang H, Zhang ZY, Xie JY, Li M. Bag of tricks for image classification with convolutional neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, 558-567. |
[48] | Aasmets O, Lüll K, Lang JM, Pan C, Kuusisto J, Fischer K, Laakso M, Lusis AJ, Org E. Machine learning reveals time-varying microbial predictors with complex effects on glucose regulation. mSystems, 2021, 6(1): e01191-20. |
[49] | Kodikara S, Ellul S, Lê Cao KA. Statistical challenges in longitudinal microbiome data analysis. Brief Bioinform, 2022, 23(4): bbac273. |
[50] |
Wang C, Segal LN, Hu JY, Zhou BY, Hayes RB, Ahn J, Li HL. Microbial risk score for capturing microbial characteristics, integrating multi-omics data, and predicting disease risk. Microbiome, 2022, 10(1): 121.
doi: 10.1186/s40168-022-01310-2 pmid: 35932029 |
[51] | Corander J, Hanage WP, Pensar J. Causal discovery for the microbiome. Lancet Microbe, 2022, 3(11): e881-e887. |
[52] |
Xu YW, Nash K, Acharjee A, Gkoutos GV. CACONET: a novel classification framework for microbial correlation networks. Bioinformatics, 2022, 38(6): 1639-1647.
doi: 10.1093/bioinformatics/btab879 pmid: 34983063 |
[1] | 鲍艳春, 石彩霞, 张传强, 谷明娟, 朱琳, 刘在霞, 周乐, 马凤英, 娜日苏, 张文广. 深度学习在基因组学中的研究进展[J]. 遗传, 2024, 46(9): 701-715. |
[2] | 杨帆, 韩巧玲, 赵文迪, 赵玥. 基于层级和全局特征结合的蛋白质序列EC编号预测[J]. 遗传, 2024, 46(8): 661-669. |
[3] | 梁卉, 王雪, 司敬方, 张毅. 利用基因组标记和机器学习算法对中国牛品种的分类准确性研究[J]. 遗传, 2024, 46(7): 530-539. |
[4] | 章子怡, 王棨临, 张俊有, 段迎迎, 刘家欣, 刘赵硕, 李春燕. 多组学数据驱动的机器学习模型在乳腺癌生存及治疗响应预测中的应用[J]. 遗传, 2024, 46(10): 820-832. |
[5] | 陈栋, 王书杰, 赵真坚, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 王金勇, 郭宗义, 吴平先, 唐国庆. 基于机器学习的猪生长性状基因组预测[J]. 遗传, 2023, 45(10): 922-932. |
[6] | 孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[7] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[8] | 胡伟澎, 李佑平, 张秀清. 基于迁移学习的MHC-I型抗原表位呈递预测[J]. 遗传, 2019, 41(11): 1041-1049. |
[9] | 赵学彤, 杨亚东, 渠鸿竹, 方向东. 组学时代下机器学习方法在临床决策支持中的应用[J]. 遗传, 2018, 40(9): 693-703. |
[10] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[11] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
[12] | 侯妍妍,应晓敏,李伍举. microRNA计算发现方法的研究进展[J]. 遗传, 2008, 30(6): 687-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: