遗传 ›› 2024, Vol. 46 ›› Issue (6): 438-451.doi: 10.16288/j.yczz.24-095
收稿日期:
2024-04-03
修回日期:
2024-05-27
出版日期:
2024-06-20
发布日期:
2024-05-28
通讯作者:
雷群英
E-mail:yuanshen20@fudan.edu.cn;qlei@fudan.edu.cn
作者简介:
沈院,博士研究生,专业方向:营养与肿瘤代谢。E-mail: yuanshen20@fudan.edu.cn
基金资助:
Yuan Shen(), Jintao Li, Miao Yin, Qunying Lei(
)
Received:
2024-04-03
Revised:
2024-05-27
Published:
2024-06-20
Online:
2024-05-28
Contact:
Qunying Lei
E-mail:yuanshen20@fudan.edu.cn;qlei@fudan.edu.cn
Supported by:
摘要:
支链氨基酸(branched-chain amino acids,BCAAs),包括亮氨酸、缬氨酸和异亮氨酸,在调节体内代谢平衡、维持正常生命活动中发挥着重要作用。许多研究报道了它们在肥胖、糖尿病和心血管等疾病中的代谢和功能。近些年研究表明,BCAAs代谢在肿瘤发生发展中也起着重要作用。本文综述了BCAAs代谢在该方面的研究进展,包括与表观遗传调控的关系,特别是围绕肿瘤代谢重塑和代谢感知,讨论了其在肿瘤细胞和肿瘤微环境(tumor microenvironment,TME)中的作用。深入了解BCAAs代谢在肿瘤发生发展中的作用及其机制有助于为开发新的肿瘤治疗策略提供理论基础。
沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451.
Yuan Shen, Jintao Li, Miao Yin, Qunying Lei. The roles of branched-chain amino acids metabolism in tumorigenesis and progression[J]. Hereditas(Beijing), 2024, 46(6): 438-451.
[1] |
Wang K, Jiang JW, Lei YL, Zhou ST, Wei YQ, Huang CH. Targeting metabolic-redox circuits for cancer therapy. Trends Biochem Sci, 2019, 44(5): 401-414.
doi: S0968-0004(19)30001-5 pmid: 30679131 |
[2] |
Wang YY, Bai CS, Ruan YX, Liu M, Chu QY, Qiu L, Yang CZ, Li BH. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun, 2019, 10(1): 201.
doi: 10.1038/s41467-018-08033-9 pmid: 30643150 |
[3] | Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol, 2020, 21(4): 183-203. |
[4] | Lv L, Lei QY. Proteins moonlighting in tumor metabolism and epigenetics. Front Med, 2021, 15(3): 383-403. |
[5] |
Xu DQ, Shao F, Bian XL, Meng Y, Liang TB, Lu ZM. The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab, 2021, 33(1): 33-50.
doi: 10.1016/j.cmet.2020.12.015 pmid: 33406403 |
[6] | Huang W, Li N, Zhang Y, Wang X, Yin M, Lei QY. AHCYL1 senses SAH to inhibit autophagy through interaction with PIK3C3 in an mTORC1-independent manner. Autophagy, 2022, 18(2): 309-319. |
[7] | Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature, 2015, 517(7534): 302-310. |
[8] |
Wang YP, Li JT, Qu J, Yin M, Lei QY. Metabolite sensing and signaling in cancer. J Biol Chem, 2020, 295(33): 11938-11946.
doi: 10.1074/jbc.REV119.007624 pmid: 32641495 |
[9] | Marítnez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer, 2021, 21(10): 669-680. |
[10] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646-674.
doi: 10.1016/j.cell.2011.02.013 pmid: 21376230 |
[11] |
Warburg O. On the origin of cancer cells. Science, 1956, 123(3191): 309-314.
doi: 10.1126/science.123.3191.309 pmid: 13298683 |
[12] | Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, Gao X, Xu YY, Zou SW, Liu YB, Cheng JK, Lei QY. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell, 2016, 64(4): 673-687. |
[13] | Zhong XY, Yuan XM, Xu YY, Yin M, Yan WW, Zou SW, Wei LM, Lu HJ, Wang YP, Lei QY. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep, 2018, 24(12): 3207-3223. |
[14] | Liu Y, Guo JZ, Liu Y, Wang K, Ding WC, Wang H, Liu X, Zhou ST, Lu XC, Yang HB, Xu CY, Gao W, Zhou L, Wang YP, Hu WG, Wei YQ, Huang CH, Lei QY. Nuclear lactate dehydrogenase a senses ROS to produce alpha- hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun, 2018, 9(1): 4429. |
[15] |
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3): 297-308.
doi: 10.1016/j.ccr.2012.02.014 pmid: 22439925 |
[16] | Yang HB, Xu YY, Zhao XN, Zou SW, Zhang Y, Zhang M, Li JT, Ren F, Wang LY, Lei QY. Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun, 2015, 6: 6973. |
[17] | Cao JY, Liao S, Zeng F, Liao QJ, Luo GQ, Zhou YH. Effects of altered glycolysis levels on CD8(+) T cell activation and function. Cell Death Dis, 2023, 14(7): 407. |
[18] |
Jones CL, Stevens BM, D'alessandro A, Reisz JA, Culp-Hill R, Nemkov T, Pei SS, Khan N, Adane B, Ye HB, Krug A, Reinhold D, Smith C, Degregori J, Pollyea DA, Jordan CT. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell, 2018, 34(5): 724-740.e4.
doi: S1535-6108(18)30471-9 pmid: 30423294 |
[19] | Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, Pinto AFM, Badur MG, Kolar MJ, Wallace M, Saghatelian A, Metallo CM. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 2020, 586(7831): 790-795. |
[20] | Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther, 2023, 8(1): 345. |
[21] | Qian L, Zhang F, Yin M, Lei QY. Cancer metabolism and dietary interventions. Cancer Biol Med, 2021, 19(2): 163-174. |
[22] | Li JT, Yang H, Lei MZ, Zhu WP, Su Y, Li KY, Zhu WY, Wang J, Zhang L, Qu J, Lv L, Lu HJ, Chen ZJ, Wang L, Yin M, Lei QY. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther, 2022, 7(1): 192. |
[23] | Li JT, Li KY, Su Y, Shen Y, Lei MZ, Zhang F, Yin M, Chen ZJ, Wen WY, Hu WG, Su D, Qu J, Lei QY. Diet high in branched-chain amino acid promotes PDAC development by USP1-mediated BCAT2 stabilization. Natl Sci Rev, 2022, 9(5): nwab212. |
[24] | Li JT, Yin M, Wang D, Wang J, Lei MZ, Zhang Y, Liu Y, Zhang L, Zou SW, Hu LP, Zhang ZG, Wang YP, Wen WY, Lu HJ, Chen ZJ, Su D, Lei QY. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat Cell Biol, 2020, 22(2): 167-174. |
[25] | Yang LM, Chu ZL, Liu M, Zou Q, Li JY, Liu Q, Wang YZ, Wang T, Xiang JY, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol, 2023, 16(1): 59. |
[26] |
Wang WM, Zou WP. Amino acids and their transporters in T cell immunity and cancer therapy. Mol Cell, 2020, 80(3): 384-395.
doi: 10.1016/j.molcel.2020.09.006 pmid: 32997964 |
[27] | Mcgarrah RW, White PJ. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol, 2023, 20(2): 77-89. |
[28] | Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K, Dai ZP, White PJ, Mcgarrah RW, Ilkayeva OR, Deleye Y, Oguri Y, Kuroda M, Ikeda K, Li HX, Ueno A, Ohishi M, Ishikawa T, Kim K, Chen Y, Sponton CH, Pradhan RN, Majd H, Greiner VJ, Yoneshiro M, Brown Z, Chondronikola M, Takahashi H, Goto T, Kawada T, Sidossis L, Szoka FC, Mcmanus MT, Saito M, Soga T, Kajimura S. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572(7771): 614-619. |
[29] | Ma QX, Zhu WY, Lu XC, Jiang D, Xu F, Li JT, Zhang L, Wu YL, Chen ZJ, Yin M, Huang HY, Lei QY. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16. Nat Metab, 2022, 4(1): 106-122. |
[30] | White PJ, Mcgarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab, 2021, 52: 101261. |
[31] | Rossmeislová L, Gojda J, Smolková K. Pancreatic cancer: branched-chain amino acids as putative key metabolic regulators? Cancer Metastasis Rev, 2021, 40(4): 1115-1139. |
[32] |
Sivanand S,Vander Heiden MG. Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell, 2020, 37(2): 147-156.
doi: S1535-6108(19)30581-1 pmid: 32049045 |
[33] |
Blair MC, Neinast MD, Arany Z. Whole-body metabolic fate of branched-chain amino acids. Biochem J, 2021, 478(4): 765-776.
doi: 10.1042/BCJ20200686 pmid: 33626142 |
[34] |
Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol, 2019, 81: 139-164.
doi: 10.1146/annurev-physiol-020518-114455 pmid: 30485760 |
[35] |
White PJ, Newgard CB. Branched-chain amino acids in disease. Science, 2019, 363(6427): 582-583.
doi: 10.1126/science.aav0558 pmid: 30733403 |
[36] | Siddik MAB, Shin AC. Recent progress on branched- chain amino acids in obesity, diabetes, and beyond. Endocrinol Metab (Seoul), 2019, 34(3): 234-246. |
[37] |
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab, 2023, 35(11): 1976-1995.e6.
doi: 10.1016/j.cmet.2023.10.005 pmid: 37939658 |
[38] |
Neinast MD, Jang C, Hui S, Murashige DS, Chu QW, Morscher RJ, Li XX, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab, 2019, 29(2): 417-429.e4.
doi: S1550-4131(18)30645-4 pmid: 30449684 |
[39] | Dimou A, Tsimihodimos V, Bairaktari E. The critical role of the branched chain amino acids (BCAAs) catabolism- regulating enzymes, branched-chain aminotransferase (BCAT) and branched-chain alpha-keto acid dehydrogenase (BCKD), in human pathophysiology. Int J Mol Sci, 2022, 23(7): 4022. |
[40] | Peng H, Wang YF, Luo WB. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene, 2020, 39(44): 6747-6756. |
[41] |
Goto M, Miyahara I, Hirotsu K, Conway M, Yennawar N, Islam MM, Hutson SM. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J Biol Chem, 2005, 280(44): 37246-37256.
doi: 10.1074/jbc.M506486200 pmid: 16141215 |
[42] |
Bledsoe RK, Dawson PA, Hutson SM. Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). Biochim Biophys Acta, 1997, 1339(1): 9-13.
pmid: 9165094 |
[43] |
Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr, 1998, 68(1): 72-81.
doi: 10.1093/ajcn/68.1.72 pmid: 9665099 |
[44] | Du C, Liu WJ, Yang J, Zhao SS, Liu HX. The role of branched-chain amino acids and branched-chain alpha- keto acid dehydrogenase kinase in metabolic disorders. Front Nutr, 2022, 9: 932670. |
[45] | Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain amino acids: catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Front Physiol, 2021, 12: 702826. |
[46] | Li ZY, Wang YB, Sun HP. The role of branched-chain amino acids and their metabolism in cardiovascular diseases. J Cardiovasc Transl Res, 2024, 17(1): 85-90. |
[47] | Lu G, Sun HP, She PX, Youn JY, Warburton S, Ping PP, Vondriska TM, Cai H, Lynch CJ, Wang YB. Protein phosphatase 2Cm is a critical regulator of branched- chain amino acid catabolism in mice and cultured cells. J Clin Invest, 2009, 119(6): 1678-1687. |
[48] |
Patrick M, Gu ZM, Zhang G, Wynn RM, Kaphle P, Cao H, Vu H, Cai F, Gao XF, Zhang YY, Chen MY, Ni M, Chuang DT, Deberardinis RJ, Xu J. Metabolon formation regulates branched-chain amino acid oxidation and homeostasis. Nat Metab, 2022, 4(12): 1775-1791.
doi: 10.1038/s42255-022-00689-4 pmid: 36443523 |
[49] |
Yin M, Lei QY. BCAT2-BCKDH metabolon maintains BCAA homeostasis. Nat Metab, 2022, 4(12): 1618-1619.
doi: 10.1038/s42255-022-00680-z pmid: 36443521 |
[50] | Verkerke ARP, Wang DD, Yoshida N, Taxin ZH, Shi X, Zheng SN, Li YK, Auger C, Oikawa S, Yook JS, Granath-Panelo M, He WT, Zhang GF, Matsushita M, Saito M, Gerszten RE, Mills EL, Banks AS, Ishihama Y, White PJ, Mcgarrah RW, Yoneshiro T, Kajimura S. BCAA-nitrogen flux in brown fat controls metabolic health independent of thermogenesis. Cell, 2024, 187(10): 2359-2374.e18. |
[51] | Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr, 2023, 63(15): 2559-2597. |
[52] | Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise- induced signalling. Proc Nutr Soc, 2004, 63(2): 351-356. |
[53] |
Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev, 2021, 101(3): 1371-1426.
doi: 10.1152/physrev.00026.2020 pmid: 33599151 |
[54] |
Parmigiani A, Nourbakhsh A, Ding BX, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep, 2014, 9(4): 1281-1291.
pmid: 25457612 |
[55] |
Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep, 2014, 9(1): 1-8.
doi: S2211-1247(14)00782-7 pmid: 25263562 |
[56] |
Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 2016, 351(6268): 43-48.
doi: 10.1126/science.aab2674 pmid: 26449471 |
[57] | Chen J, Ou YH, Luo R, Wang J, Wang D, Guan JL, Li Y, Xia PX, Chen PR, Liu Y. SAR1B senses leucine levels to regulate mTORC1 signalling. Nature, 2021, 596(7871): 281-284. |
[58] |
Son SM, Park SJ, Lee H, Siddiqi F, Lee JE, Menzies FM, Rubinsztein DC. Leucine signals to mTORC1 via its metabolite Acetyl-Coenzyme A. Cell Metab, 2019, 29(1): 192-201.e7.
doi: S1550-4131(18)30514-X pmid: 30197302 |
[59] |
Darnell AM, Subramaniam AR, O'shea EK. Translational control through differential ribosome pausing during amino acid limitation in mammalian cells. Mol Cell, 2018, 71(2): 229-243.e11.
doi: S1097-2765(18)30516-1 pmid: 30029003 |
[60] |
Campbell SL, Wellen KE. Metabolic signaling to the nucleus in cancer. Mol Cell, 2018, 71(3): 398-408.
doi: S1097-2765(18)30584-7 pmid: 30075141 |
[61] |
Kaelin Jr WG, Mcknight SL. Influence of metabolism on epigenetics and disease. Cell, 2013, 153(1): 56-69.
doi: 10.1016/j.cell.2013.03.004 pmid: 23540690 |
[62] |
Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol, 2018, 217(7): 2247-2259.
doi: 10.1083/jcb.201803061 pmid: 29760106 |
[63] |
White PJ, Mcgarrah RW, Grimsrud PA, Tso SC, Yang WH, Haldeman JM, Grenier-Larouche T, An J, Lapworth AL, Astapova I, Hannou SA, George T, Arlotto M, Olson LB, Lai M, Zhang GF, Ilkayeva O, Herman MA, Wynn RM, Chuang DT, Newgard CB. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab, 2018, 27(6): 1281-1293.e7.
doi: S1550-4131(18)30258-4 pmid: 29779826 |
[64] |
Guertin DA, Wellen KE. Acetyl-CoA metabolism in cancer. Nat Rev Cancer, 2023, 23(3): 156-172.
doi: 10.1038/s41568-022-00543-5 pmid: 36658431 |
[65] |
Sivanand S, Viney I, Wellen KE. Spatiotemporal control of Acetyl-CoA metabolism in chromatin regulation. Trends Biochem Sci, 2018, 43(1): 61-74.
doi: S0968-0004(17)30214-1 pmid: 29174173 |
[66] |
Tian YZ, Ma JJ, Wang H, Yi XL, Wang HN, Zhang HX, Guo S, Yang YQ, Zhang BL, Du J, Shi Q, Gao TW, Guo WN, Li CY. BCAT2 promotes melanoma progression by activating lipogenesis via the epigenetic regulation of FASN and ACLY expressions. Cell Mol Life Sci, 2023, 80(11): 315.
doi: 10.1007/s00018-023-04965-8 pmid: 37801083 |
[67] | Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, Bahr C, Zeisberger P, Przybylla A, Sohn M, Tönjes M, Erez A, Adler L, Jensen P, Scholl C, Fröhling S, Cocciardi S, Wuchter P, Thiede C, Flörcken A, Westermann J, Ehninger G, Lichter P, Hiller K, Hell R, Herrmann C, Ho AD, Krijgsveld J, Radlwimmer B, Trumpp A. BCAT1 restricts alphaKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature, 2017, 551(7680): 384-388. |
[68] | Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1): 17-30. |
[69] |
Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, Pleier SV, Bai AHC, Karra D, Piro RM, Felsberg J, Addington A, Lemke D, Weibrecht I, Hovestadt V, Rolli CG, Campos B, Turcan S, Sturm D, Witt H, Chan TA, Herold-Mende C, Kemkemer R, König R, Schmidt K, Hull WE, Pfister SM, Jugold M, Hutson SM, Plass C, Okun JG, Reifenberger G, Lichter P, Radlwimmer B. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med, 2013, 19(7): 901-908.
doi: 10.1038/nm.3217 pmid: 23793099 |
[70] |
Oktyabri D, Ishimura A, Tange S, Terashima M, Suzuki T. DOT1L histone methyltransferase regulates the expression of BCAT1 and is involved in sphere formation and cell migration of breast cancer cell lines. Biochimie, 2016, 123: 20-31.
doi: 10.1016/j.biochi.2016.01.005 pmid: 26783998 |
[71] |
Gu ZM, Liu YX, Cai F, Patrick M, Zmajkovic J, Cao H, Zhang YY, Tasdogan A, Chen MN, Qi L, Liu X, Li KL, Lyu JH, Dickerson KE, Chen WN, Ni M, Merritt ME, Morrison SJ, Skoda RC, Deberardinis RJ, Xu J. Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation. Cancer Discov, 2019, 9(9): 1228-1247.
doi: 10.1158/2159-8290.CD-19-0152 pmid: 31189531 |
[72] |
Le Bricon T. Effects of administration of oral branched- chain amino acids on anorexia and caloric intake in cancer patients. Clin Nutr, 1996, 15(6): 337.
pmid: 16844068 |
[73] |
Tayek JA, Bistrian BR, Hehir DJ, Martin R, Moldawer LL, Blackburn GL. Improved protein kinetics and albumin synthesis by branched chain amino acid- enriched total parenteral nutrition in cancer cachexia. a prospective randomized crossover trial. Cancer, 1986, 58(1): 147-157.
pmid: 3085914 |
[74] | Ananieva EA, Wilkinson AC. Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care, 2018, 21(1): 64-70. |
[75] |
Lee JH, Cho YR, Kim JH, Kim J, Nam HY, Kim SW, Son J. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med, 2019, 51(11): 1-11.
doi: 10.1038/s12276-019-0350-z pmid: 31784505 |
[76] | Zhu ZW, Achreja A, Meurs N, Animasahun O, Owen S, Mittal A, Parikh P, Lo TW, Franco-Barraza J, Shi JQ, Gunchick V, Sherman MH, Cukierman E, Pickering AM, Maitra A, Sahai V, Morgan MA, Nagrath S, Lawrence TS, Nagrath D. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal- rich PDAC tumours. Nat Metab, 2020, 2(8): 775-792. |
[77] | Zhang B, Chen Y, Shi XL, Zhou M, Bao L, Hatanpaa KJ, Patel T, Deberardinis RJ, Wang YF, Luo WB. Regulation of branched-chain amino acid metabolism by hypoxia- inducible factor in glioblastoma. Cell Mol Life Sci, 2021, 78(1): 195-206. |
[78] | Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, Tayyari F, Mcskimming D, Kannan N, Tojo A, Edison AS, Ito T. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature, 2017, 545(7655): 500-504. |
[79] |
Ericksen RE, Lim SL, Mcdonnell E, Shuen WH, Vadiveloo M, White PJ, Ding ZB, Kwok R, Lee P, Radda GK, Toh HC, Hirschey MD, Han WP. Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab, 2019, 29(5): 1151-1165.e6.
doi: S1550-4131(18)30757-5 pmid: 30661928 |
[80] |
Xue PP, Zeng FF, Duan QH, Xiao JJ, Liu L, Yuan P, Fan LN, Sun HM, Malyarenko OS, Lu H, Xiu RJ, Liu SQ, Shao C, Zhang JM, Yan W, Wang Z, Zheng JY, Zhu F. BCKDK of BCAA catabolism cross-talking with the MAPK pathway promotes tumorigenesis of colorectal cancer. EBioMedicine, 2017, 20: 50-60.
doi: S2352-3964(17)30192-5 pmid: 28501528 |
[81] |
Qian L, Li N, Lu XC, Xu MD, Liu Y, Li KY, Zhang Y, Hu KW, Qi YT, Yao J, Wu YL, Wen WY, Huang SL, Chen ZJ, Yin M, Lei QY. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat Metab, 2023, 5(7): 1159-1173.
doi: 10.1038/s42255-023-00818-7 pmid: 37337119 |
[82] | Zhang L, Han JQ. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun, 2017, 486(2): 224-231. |
[83] | Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget, 2015, 6(31): 31522-31543. |
[84] |
Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, Lau AN, Ji BW, Dixit PD, Hosios AM, Muir A, Chin CR, Freinkman E, Jacks T, Wolpin BM, Vitkup D, Vander Heiden MG. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science, 2016, 353(6304): 1161-1165.
doi: 10.1126/science.aaf5171 pmid: 27609895 |
[85] | Qu YY, Zhao R, Zhang HL, Zhou Q, Xu FJ, Zhang X, Xu WH, Shao N, Zhou SX, Dai B, Zhu Y, Shi GH, Shen YJ, Zhu YP, Han CT, Chang K, Lin Y, Zang WD, Xu W, Ye DW, Zhao SM, Zhao JY. Inactivation of the AMPK- GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res, 2020, 80(2): 319-333. |
[86] |
Martin SB, Reiche WS, Fifelski NA, Schultz AJ, Stanford SJ, Martin AA, Nack DL, Radlwimmer B, Boyer MP, Ananieva EA. Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling. Biochem J, 2020, 477(9): 1579-1599.
doi: 10.1042/BCJ20190754 pmid: 32297642 |
[87] | Wang P, Wu SH, Zeng XF, Zhang YQ, Zhou Y, Su LL, Lin W. BCAT1 promotes proliferation of endometrial cancer cells through reprogrammed BCAA metabolism. Int J Clin Exp Pathol, 2018, 11(12): 5536-5546. |
[88] |
Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, Yuan C, Bao Y, Townsend MK, Tworoger SS, Davidson SM, Papagiannakopoulos T, Yang AN, Dayton TL, Ogino S, Stampfer MJ, Giovannucci EL, Qian ZR, Rubinson DA, Ma J, Sesso HD, Gaziano JM, Cochrane BB, Liu SM, Wactawski-Wende J, Manson JE, Pollak MN, Kimmelman AC, Souza A, Pierce K, Wang TJ, Gerszten RE, Fuchs CS, Vander Heiden MG, Wolpin BM. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med, 2014, 20(10): 1193-1198.
doi: 10.1038/nm.3686 pmid: 25261994 |
[89] |
Katagiri R, Goto A, Nakagawa T, Nishiumi S, Kobayashi T, Hidaka A, Budhathoki S, Yamaji T, Sawada N, Shimazu T, Inoue M, Iwasaki M, Yoshida M, Tsugane S. Increased levels of branched-chain amino acid associated with increased risk of pancreatic cancer in a prospective case-control study of a large cohort. Gastroenterology, 2018, 155(5): 1474-1482.e1.
doi: S0016-5085(18)34821-2 pmid: 30076838 |
[90] |
Qiu YP, Cai GX, Su MM, Chen TL, Zheng XJ, Xu Y, Ni Y, Zhao AH, Xu LX, Cai SJ, Jia W. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res, 2009, 8(10): 4844-4850.
doi: 10.1021/pr9004162 pmid: 19678709 |
[91] |
Budhathoki S, Iwasaki M, Yamaji T, Yamamoto H, Kato Y, Tsugane S. Association of plasma concentrations of branched-chain amino acids with risk of colorectal adenoma in a large Japanese population. Ann Oncol, 2017, 28(4): 818-823.
doi: 10.1093/annonc/mdw680 pmid: 28011449 |
[92] | Delphan M, Lin TD, Liesenfeld DB, Nattenmüller J, Böhm JT, Gigic B, Habermann N, Zielske L, Schrotz-King P, Schneider M, Ulrich A, Kauczor HU, Ulrich CM, Ose J. Associations of branched-chain amino acids with parameters of energy balance and survival in colorectal cancer patients: results from the ColoCare study. Metabolomics, 2018, 2018(14): 22. |
[93] |
Cross AJ, Moore SC, Boca S, Huang WY, Xiong XQ, Stolzenberg-Solomon R, Sinha R, Sampson JN. A prospective study of serum metabolites and colorectal cancer risk. Cancer, 2014, 120(19): 3049-3057.
doi: 10.1002/cncr.28799 pmid: 24894841 |
[94] | Lei MZ, Li XX, Zhang Y, Li JT, Zhang F, Wang YP, Yin M, Qu J, Lei QY. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther, 2020, 5(1): 70. |
[95] |
Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, Egolf S, Sela Y, Trizzino M, Gardini A, Garcia BA, Snyder NW, Stanger BZ, Wellen KE. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov, 2019, 9(3): 416-435.
doi: 10.1158/2159-8290.CD-18-0567 pmid: 30626590 |
[96] |
Zhou W, Feng XL, Ren CP, Jiang XJ, Liu WD, Huang W, Liu ZH, Li Z, Zeng L, Wang L, Zhu B, Shi J, Liu J, Zhang C, Liu YY, Yao KT. Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol Cancer, 2013, 12: 53.
doi: 10.1186/1476-4598-12-53 pmid: 23758864 |
[97] |
Tada T, Kumada T, Toyoda H, Yasuda S, Koyabu T, Nakashima M. Impact of branched-chain amino acid granule therapy in patients with hepatocellular carcinoma who have normal albumin levels and low branched-chain amino acid to tyrosine ratios. Nutr Cancer, 2019, 71(7): 1132-1141.
doi: 10.1080/01635581.2019.1597905 pmid: 30955354 |
[98] | Kim SY, Ong QX, Liao YL, Ding ZB, Tan AQL, Lim LTR, Tan HM, Lim SL, Lee QY, Han W. Genetic ablation of LAT1 inhibits growth of liver cancer cells and downregulates mTORC1 signaling. Int J Mol Sci, 2023, 24(11): 9171. |
[99] |
Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic interplay in the tumor microenvironment. Cancer Cell, 2021, 39(1): 28-37.
doi: 10.1016/j.ccell.2020.09.004 pmid: 33125860 |
[100] |
De Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41(3): 374-403.
doi: 10.1016/j.ccell.2023.02.016 pmid: 36917948 |
[101] | Chang CH, Qiu J, O'sullivan D, Buck MD, Noguchi T, Curtis JD, Chen QY, Gindin M, Gubin MM, Van Der Windt GJW, Tonc E, Schreiber RD, Pearce EJ, Pearce EL. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6): 1229-1241. |
[102] | Yin M, Lei QY. Targeting stromal metabolism in pancreatic ductal adenocarcinoma. Nat Cell Biol, 2024, 26(4): 514-515. |
[103] |
Chhabra Y, Weeraratna AT. Fibroblasts in cancer: unity in heterogeneity. Cell, 2023, 186(8): 1580-1609.
doi: 10.1016/j.cell.2023.03.016 pmid: 37059066 |
[104] |
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang CG, Fortina P, Addya S, Pestell RG, Martinez- Outschoorn UE, Sotgia F, Lisanti MP. The reverse Warburg Effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8(23): 3984-4001.
doi: 10.4161/cc.8.23.10238 pmid: 19923890 |
[105] |
Ikeda K, Kinoshita M, Kayama H, Nagamori S, Kongpracha P, Umemoto E, Okumura R, Kurakawa T, Murakami M, Mikami N, Shintani Y, Ueno S, Andou A, Ito M, Tsumura H, Yasutomo K, Ozono K, Takashima S, Sakaguchi S, Kanai Y, Takeda K. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep, 2017, 21(7): 1824-1838.
doi: S2211-1247(17)31545-0 pmid: 29141216 |
[106] |
Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem, 2014, 289(27): 18793-18804.
doi: 10.1074/jbc.M114.554113 pmid: 24847056 |
[107] |
Papathanassiu AE, Ko JH, Imprialou M, Bagnati M, Srivastava PK, Vu HA, Cucchi D, Mcadoo SP, Ananieva EA, Mauro C, Behmoaras J. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat Commun, 2017, 8: 16040.
doi: 10.1038/ncomms16040 pmid: 28699638 |
[108] | Yao CC, Sun RM, Yang Y, Zhou HY, Meng ZW, Chi R, Xia LL, Ji P, Chen YY, Zhang GQ, Sun HP, Lu S, Yang C, Wang Y. Accumulation of branched-chain amino acids reprograms glucose metabolism in CD8(+) T cells with enhanced effector function and anti-tumor response. Cell Rep, 2023, 42(3): 112186. |
[109] |
Silva LS, Poschet G, Nonnenmacher Y, Becker HM, Sapcariu S, Gaupel AC, Schlotter M, Wu YH, Kneisel N, Seiffert M, Hell R, Hiller K, Lichter P, Radlwimmer B. Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype. EMBO Rep, 2017, 18(12): 2172-2185.
doi: 10.15252/embr.201744154 pmid: 29066459 |
[110] | Cai ZY, Chen JB, Yu ZZ, Li HH, Liu Z, Deng DS, Liu JH, Chen CL, Zhang CY, Ou ZY, Chen MF, Hu J, Zu XB. BCAT2 shapes a noninflamed tumor microenvironment and induces resistance to anti-PD-1/PD-L1 immunotherapy by negatively regulating proinflammatory chemokines and anticancer immunity. Adv Sci (Weinh), 2023, 10(8): e2207155. |
[111] | Zheng J, Liu YQ, Wang JW, Shi JW, Li L, Jiang XF, Tao LS. Integrated single-cell and bulk characterization of branched chain amino acid metabolism-related key gene BCAT1 and association with prognosis and immunogenicity of clear cell renal cell carcinoma. Aging (Albany NY), 2024, 16(3): 2715-2735. |
[1] | 孙朝冉, 吴旭东. 组蛋白变体H2A.Z的转录调控功能与动态作用机制[J]. 遗传, 2024, 46(4): 279-289. |
[2] | 孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[3] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[4] | 欧秀芳, 吴莹, 李宁, 姜丽丽, 刘宝, 宫磊. 基于科教融合培养大学生拔尖创新能力的表观遗传学综合实验课程[J]. 遗传, 2023, 45(12): 1158-1168. |
[5] | 赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[6] | 曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
[7] | 张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[8] | 赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[9] | 何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[10] | 王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[11] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[12] | 王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[13] | 王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[14] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[15] | 胡颖楚, 胡豪畅, 林少沂, 陈晓敏. DNA羟甲基化调控动脉粥样硬化的研究进展[J]. 遗传, 2020, 42(7): 632-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: