[1] |
Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis. Cell, 2010, 141(3): 550. e1-550.e2.
|
[2] |
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012, 139(17): 3081-3098.
doi: 10.1242/dev.074674
pmid: 22872082
|
[3] |
Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360(6401): 273-277.
|
[4] |
Müller BM, Saedler H, Zachgo S. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J, 2001, 28(2): 169-179.
pmid: 11722760
|
[5] |
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.
|
[6] |
Gustafson-Brown C, Savidge B, Yanofsky MF. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell, 1994, 76(1): 131-143.
|
[7] |
Zhang CL, Sun YL, Yu XM, Li H, Bao MZ, He YH. Functional conservation and divergence of five AP1/FUL-like genes in Marigold (Tagetes erecta L.). Genes (Basel), 2021, 12(12): 2011.
|
[8] |
Monniaux M, Pieper B, McKim SM, Routier- Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. Elife, 2018, 7: e39399.
|
[9] |
Sawettalake N, Bunnag S, Wang YW, Shen LS, Yu H. DOAP1 promotes flowering in the orchid Dendrobium Chao Praya Smile. Front Plant Sci, 2017, 8: 400.
doi: 10.3389/fpls.2017.00400
pmid: 28386268
|
[10] |
Zhang SS, Lu SJ, Yi SS, Han HJ, Zhou Q, Cai FF, Bao MZ, Liu GF. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree. Plant Sci, 2019, 280: 206-218.
doi: S0168-9452(18)30749-0
pmid: 30823999
|
[11] |
Lai XL, Vega-Léon R, Hugouvieux V, Blanc-Mathieu R, van der Wal F, Lucas J, Silva CS, Jourdain A, Muino JM, Nanao MH, Immink R, Kaufmann K, Parcy F, Smaczniak C, Zubieta C. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun, 2021, 12(1): 4760.
doi: 10.1038/s41467-021-24978-w
pmid: 34362909
|
[12] |
Yue YL, Sun S, Li JW, Yu HD, Wu HX, Sun BQ, Li T, Han TF, Jiang BJ. GmFULa improves soybean yield by enhancing carbon assimilation without altering flowering time or maturity. Plant Cell Rep, 2021, 40(10): 1875-1888.
|
[13] |
Jiang XB, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, De Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Plant Cell, 2022, 34(3): 1002-1019.
|
[14] |
Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH. Over-expression of the Gerbera hybrida At-SOC1- like1 gene Gh-SOC1 leads to floral organ identity deterioration. Ann Bot, 2011, 107(9): 1491-1499.
|
[15] |
Goloveshkina EN, Shul'ga OA, Shchennikova AV, Kamionskaya AM, Skryabin KG. Constitutive expression of the sunflower and chrysanthemum genes of the AP1/FUL group changes flowering timing in transgenic tobacco plants. Dokl Biol Sci, 2010, 434: 322-324.
|
[16] |
Fambrini M, Bernardi R, Pugliesi C. Ray flower initiation in the Helianthus radula inflorescence is influenced by a functional allele of the HrCYC2c gene. Genesis, 2020, 58(12): e23401.
|
[17] |
Luan SN, Liu LL, Zhou JY, Imam N, Cui ML, Piao CL. Functional analysis of flower development related gene SvGLOBOSA from Senecio vulgaris. Hereditas(Beijing), 2022, 44(6): 521-530.
|
|
栾思楠, 刘乐乐, 周佳圆,努尔阿斯娅·伊马木, 崔敏龙, 朴春兰. 欧洲千里光花发育相关基因SvGLOBOSA功能研究. 遗传, 2022, 44(6): 521-530.
|
[18] |
Li FF, Hao YM, Cui ML, Piao CL. Cloning and functional analysis of RADIALIS-like 1 gene from Antirrhinum majus. Hereditas(Beijing), 2023, 45(6): 526-535.
|
|
李菲菲, 郝燕敏, 崔敏龙, 朴春兰. 金鱼草RADIALIS-like 1基因克隆与功能研究. 遗传, 2023, 45(6): 526-535.
|
[19] |
Nicholas AZ. Flower head development in the asteraceae family[Dissertation]. The University of Manchester, 2014.
|
[20] |
Hao YM, Chen KL, Feng LJ, Li FF, Cui ML, Piao CL. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris. J Zhejiang A F Univ, 2022, 39(4): 821-829.
|
|
郝燕敏, 陈柯俐, 冯丽君, 李菲菲, 崔敏龙, 朴春兰. 欧洲千里光SvAPETALA1基因的克隆及功能分析. 浙江农林大学学报, 2022, 39(4): 821-829.
|
[21] |
Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4(1): 45-51.
doi: 10.1111/j.1467-7652.2005.00156.x
pmid: 17177784
|
[22] |
Morel P, Chambrier P, Boltz V, Chamot S, Rozier F, Rodrigues Bento S, Trehin C, Monniaux M, Zethof J, Vandenbussche M. Divergent functional diversification patterns in the SEP/AGL6/AP1 MADS-Box transcription factor superclade. Plant Cell, 2019, 31(12): 3033- 3056.
|
[23] |
Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol, 2004, 134(4): 1632-1641.
pmid: 15064378
|
[24] |
Sather DN, Golenberg EM. Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution. Planta, 2009, 229(3): 507-521.
doi: 10.1007/s00425-008-0851-9
pmid: 19005675
|
[25] |
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. Plant Cell, 2013, 25(6): 2070-2083.
|
[26] |
Zhang WX, Fan SL, Pang CY, Wei HL, Ma JH, Song MZ, Yu SX. Molecular cloning and function analysis of two SQUAMOSA-like MADS-box genes from Gossypium hirsutum L. J Integr Plant Biol, 2013, 55(7): 597-607.
|
[27] |
Ruokolainen S, Ng YP, Broholm SK, Albert VA, Elomaa P, Teeri TH. Characterization of SQUAMOSA- like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biol, 2010, 10: 128.
doi: 10.1186/1471-2229-10-128
pmid: 20579337
|
[28] |
Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2regulate ethylene- independent aspects of fruit ripening. Plant Cell, 2012, 24(11): 4437-4451.
|
[29] |
Pabón-mora N, Ambrose BA, Litt A. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol, 2012, 158(4): 1685-1704.
doi: 10.1104/pp.111.192104
pmid: 22286183
|
[30] |
Ferrándiz C, Fourquin C. Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot, 2014, 65(16): 4505-4513.
doi: 10.1093/jxb/ert479
pmid: 24482369
|
[31] |
Liu CJ, Zhang J, Zhang N, Shan HY, Su KM, Zhang JS, Meng Z, Kong HZ, Chen ZD. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol Biol Evol, 2010, 27(7): 1598-1611.
doi: 10.1093/molbev/msq044
pmid: 20147438
|
[32] |
Ma GY, Zou QC, Shi XH, Tian DQ, Sheng QQ. Ectopic expression of the AaFUL1gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene, 2019, 696: 197-205.
|
[33] |
Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, Häggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol, 2010, 153(4): 1619-1629.
|