遗传 ›› 2014, Vol. 36 ›› Issue (7): 661-668.doi: 10.3724/SP.J.1005.2014.0661
周坤, 张今今
收稿日期:
2013-12-16
出版日期:
2014-07-20
发布日期:
2014-06-23
通讯作者:
张今今, 博士, 副教授, 研究方向:植物遗传学。E-mail: zhangjinjin@snnu.edu.cn
作者简介:
周坤, 硕士研究生, 专业方向:植物遗传学。E-mail: zhoukun881016@163.com
基金资助:
Kun Zhou, Jinjin Zhang
Received:
2013-12-16
Online:
2014-07-20
Published:
2014-06-23
摘要: 一氧化氮(NO)是具有生物活性的重要信号分子, 在植物生长发育的许多过程中发挥调节作用。越来越多的研究证据表明, NO在植物花发育过程中具有重要作用, 然而迄今尚未见关于NO调控植物花发育方面的系统报道。文章介绍了植物NO合成途径的最新研究进展, 综述了NO抑制植物开花转换可能的作用机理和NO在花粉萌发与花粉管延伸过程中的调节作用, 以期为植物内源NO的生物合成及NO对花发育的调节研究提供参考。
周坤, 张今今. 植物中的NO及其对花发育的调节[J]. 遗传, 2014, 36(7): 661-668.
Kun Zhou, Jinjin Zhang. Nitric oxide in plants and its role in regulating flower development[J]. HEREDITAS(Beijing), 2014, 36(7): 661-668.
[1] M, Hanhart CJ, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet , 1991, 229(1): 57-66. [2] PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell , 2004, 16(Suppl.): S18-S31. [3] GG, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science , 2002, 296(5566): 285-289. [4] A, Cremer F, Coupland G. Control of flowering time interacting pathways as a basis for diversity. Plant Cell , 2002, 14(Suppl.): S111-S130. [5] U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J , 2012, 33(7): 829-837. [6] M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature , 1998, 394(6693): 585-588. [7] J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA , 1998, 95(17): 10328-10333. [8] D, Pugin A, Klessig DF, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci , 2001, 6(4): 177-183. [9] L, García-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol , 2003, 54(1): 109-136. [10] Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM. Nitric oxide represses the Arab i dopsis floral transition. Science , 2004, 305(5692): 1968- 1971. [11] K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I. Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol , 2008, 49(7): 1112-1121. [12] N, Arisan D. Nitric oxide signalling in plants. B ot R ev , 2009, 75(2): 203-229. [13] J, Klessig DF. Nitric oxide as a signal in plants. C urr O pin P lant B iol , 1999, 2(5): 369-374. [14] KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. T rends P lant S ci , 2011, 16(3): 160- 168. [15] DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol , 1992, 65: 287-346. [16] WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. B iochem J , 2001, 357(Pt 3): 593-615. [17] M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus . FEBS Lett , 1996, 398(2-3): 159-164. [18] MR, Ytterberg AJ, van Wijk KJ, Klessig DF. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell , 2003, 113(4): 469-482. [19] FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science , 2003, 302(5642): 100-103. [20] M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants-where do we stand? Physiol Plant , 2010, 138(4): 372-383. [21] M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem , 2008, 283(47): 32957-32967. [22] FQ. Response to Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J. Plant nitric oxide synthase: AtNOS1 is just the beginning. Trends Plant Sci , 2006, 11(11): 527-528. [23] T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J. Plant nitric oxide synthase: a never-ending story? Trends Plant Sci , 2006, 11(11): 524- 525. [24] JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ. Nitric oxide function and signalling in plant disease resistance. J Exp Bot , 2008, 59(2): 147-154. [25] R, Galli M, Heimer YM, Bielefeld S, Okamoto M, Mack A, Crawford NM. Interference with the citrulline- based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts. FEBS J , 2007, 274(16): 4238-4245. [26] E, Flores-Pérez Ú, Sauret-Güeto S, Rodríguez- Concepción M. Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. Plant Cell , 2009, 21(1): 18-23. [27] Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys , 2011, 506(1): 1-11. [28] FQ, Crawford NM. Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell , 2005, 17(12): 3436-3450. [29] FJ, Palma JM, Del Río LA, Barroso JB. Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol , 2009, 184(1): 9-14. [30] CW, Du ST, Shamsi IH, Luo BF, Lin XY. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. J Exp Bot , 2011, 62(11): 3875-3884. [31] DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML, Yannarelli GG. Nitric oxide synthase- like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry , 2010, 71(14-15): 1700-1707. [32] J, Lu H, Lu K, Duan Y, An L, Zhu C. Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta , 2009, 230(4): 599-610. [33] JT. NO synthase? Generation of nitric oxide in plants. Period Biol , 2012, 114(1): 19-24. [34] E, Jagadis Gupta K, Sonoda M, Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J , 2005, 41(5): 732-743. [35] Y, Rockel P, Moureaux T, Quillere I, Leydecker M, Kaiser W, Morot-Gaudry J. Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta , 2002, 215(5): 708-715. [36] JV, Harper JE. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol , 1986, 82(3): 718- 723. [37] H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci , 1999, 4(4): 128-129. [38] P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro . J Exp Bot , 2002, 53(366): 103-110. [39] US, Ten Hoopen F, Provan F, Kaiser WM, Meyer C, Lillo C. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and NO emission from leaf and root tissue. Planta , 2004, 219(1): 59-65. [40] C, Meyer C, Lea US, Provan F, Oltedal S. Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot , 2004, 55(401): 1275-1282. [41] A, Katou S, Yoshioka H, Doke N, Kawakita K. Nitrate reductase is responsible for elicitin- induced nitric oxide production in Nicotiana benthamiana . Plant Cell Physiol , 2006, 47(6): 726-735. [42] Z, Ortega L, Erdei L. Involvement of nitrate reductase (NR) in osmotic stress-induced NO generation of Arabidopsis thaliana L. roots. J Plant Physiol , 2010, 167(1): 77-80. [43] JR, Jiang MY, Lin F, Xu SC, Zhang AY, Tan MP. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol , 2008, 50(2): 231-243. [44] L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, Kaiser WM, Mercier H. Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. Plant Physiol , 2010, 152(4): 1971-1985. [45] EP, Iannone MF, Groppa MD, Benavides MP. Polyamines modulate nitrate reductase activity in wheat leaves: involvement of nitric oxide. Amino A cids , 2012, 42(2-3): 857-865. [46] A, Rolletschek H, Borisjuk L, Avelange- Macherel MH, Curien G, Mostefai HA, Andriantsitohaina R, Macherel D. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta , 2008, 1777(10): 1268-1275. [47] O, Fagerstedt KV. Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol Biochem , 2010, 48(5): 359-373. [48] A, Durner J. The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci , 2011, 181(4): 401- 404. [49] C, Strube F, Marx G, Ullrich WR, Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta , 2001, 212(5-6): 835-841. [50] C, Stöhr C. Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. In: Foyer CH, Noctor G, eds. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Berlin: Springer Netherlands, 2002: 49-62. [51] JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Río LA. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem , 2002, 40(6-8): 521-530. [52] FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA. Peroxisomal xanthine oxidore-duc-tase: Characterization of the enzyme from pea ( Pisum sativum L.) leaves. J Plant Physiol , 2008, 165(13): 1319- 1330. [53] FJ, de la Colina C, Sánchez-Rasero F, del Rio LA. A role for leaf peroxisomes in the catabolism of purines. J Plant Physiol , 1997, 151(2): 246-250. [54] BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem , 2000, 275(11): 7757-7763. [55] F, Riechmann JL. Gene networks controlling the initiation of flower development. Trends Genet , 2010, 26(12): 519-527. [56] W, Zhou Y, Liu X, Yu P, Cohen JD, Meyerowitz EM. LEAFY controls auxin response pathways in floral primor-dium formation. Sci Signal , 2013, 6(270): ra23. [57] C, Müller AE. Flowering time control and applica-tions in plant breeding. Trends Plant Sci , 2009, 14(10): 563-573. [58] P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabido p sis . Nature , 2001, 410(6832): 1116-1120. [59] MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis . Nature , 2002, 419(6904): 308-312. [60] C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Kay SA. Cloning of the Arabidopsis clock gene TOC1 , an autoregulatory response regulator homolog. Science , 2000, 289(5480): 768-771. [61] D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science , 2001, 293(5531): 880-883. [62] K, Uemura T, Nakano A, Ueda T. Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana . PLoS O NE , 2012, 7(7): e42239. [63] GG. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Ar a bidopsis flowering time. Curr Opin Plant Biol , 2004, 7(5): 570-574. [64] GG. NO flowering. Bioessays , 2005, 27(3): 239- 241. [65] R. Flowering and determinacy in Arabidopsis . J Exp Bot , 2007, 58(5): 899-907. [66] FC, Paul AL, Zupanska AK, Ferl RJ. 14-3-3 proteins in plant physiology. Semin Cell Dev Biol , 2011, 22(7): 720-727. [67] JD, Folta KM, Paul AL, Ferl RJ. The 14-3-3 proteins μ and υ influence transition to flowering and early phytochrome response. Plant Physiol , 2007, 145(4): 1692-1702. [68] YA, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol , 2009, 50(3): 429-438. [69] C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Baudouin E. Nitric oxide participates in cold- responsive phosphosphingolipid formation and gene expres-sion in Arabidopsis thaliana . New Phytol , 2011, 189(2): 415-427. [70] MG, Chen L, Zhang LL, Zhang WH. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis . Plant Physiol , 2009, 151(2): 755-767. [71] ML, Morris KE, Roux SJ, Porterfield DM. Nitric oxide and cGMP signaling in calcium-dependent develop-ment of cell polarity in Ceratopteris richardii . Plant Ph y siol , 2007, 144(1): 94-104. [72] AY, Boavida LC, Aggarwal M, Wu HM, Feijó JA. The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. J Exp Bot , 2010, 61(7): 1907-1915. [73] AM, Porterfield DM, Feijó JA. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development , 2004, 131(11): 2707-2714. [74] J, Sedlářová M, Piterková J, Luhová L, Petřivalský M. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci , 2011, 181(5): 560-572. [75] H, An L, Tan L, Hou Z, Wang X. Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro . Environ Exp Bot , 2000, 43(1): 45-53. [76] JM, Bai XL, Wang RB, Cao B, She XP. The involve-ment of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro . Physiol Plant , 2007, 131(2): 273-282. [77] S, Xie B, Yin L, Duan L, Li Z, Eneji AE, Tsuji W, Tsunekawa A. Increased UV-B Radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize ( Zea mays L.) pollen. Photochem Photobiol , 2010, 86(1): 110-116. [78] 蒋芯, 杜昱林, 王玉花, 黎星辉. 低温对茶树花粉管抑制作用与NO关系的研究. 园艺学报, 2013, 40(8): 1535-1540. [79] YH, Li XC, Zhuge Q, Jiang, X, Wang WD, Fang WP, Chen X, Li XH. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro . PLoS O NE , 2012, 7(12): e52436. [80] KK, Okada K. Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development , 2000, 127(20): 4511-4518. |
[1] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[2] | 李文利,湛桂花,郑华. 放线菌萜类化合物生物合成研究进展[J]. 遗传, 2011, 33(10): 1087-1092. |
[3] | 张向前,邹金松,朱海涛,李晓燕,曾瑞珍. 水稻早熟多子房突变体fon5的遗传分析和基因定位[J]. 遗传, 2008, 30(10): 1349-1355. |
[4] | 袁晓萌,周云涛,张红岩,薛华,周琳,赵云. 甘蓝型油菜小核糖核蛋白BnSmD1编码区全长cDNA 的克隆与表达分析[J]. 遗传, 2007, 29(12): 1525-1528. |
[5] | 马厚勋,谢正祥,牛永红,李章勇,周平. 汉族人群NOS3 A-922G、NOS3 T-786C 与NOS3 G894T SNP的等位基因及其组合分布与高血压的相关性[J]. 遗传, 2006, 28(1): 3-10. |
[6] | 康国章,王永华,郭天财,朱云集,官春云. 植物淀粉合成的调控酶[J]. 遗传, 2006, 28(1): 110-116. |
[7] | 王利琳,梁海曼,庞基良,朱睦元. 拟南芥LEAFY基因在花发育中的网络调控及其生物学功能[J]. 遗传, 2004, 26(1): 137-142. |
[8] | 张红伟,谭振波,陈荣军,李建生,陈刚. 玉米淀粉生物合成及其遗传操纵[J]. 遗传, 2003, 25(4): 455-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: