[1] M, Hanhart CJ, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet , 1991, 229(1): 57-66. [2] PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell , 2004, 16(Suppl.): S18-S31. [3] GG, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science , 2002, 296(5566): 285-289. [4] A, Cremer F, Coupland G. Control of flowering time interacting pathways as a basis for diversity. Plant Cell , 2002, 14(Suppl.): S111-S130. [5] U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J , 2012, 33(7): 829-837. [6] M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature , 1998, 394(6693): 585-588. [7] J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA , 1998, 95(17): 10328-10333. [8] D, Pugin A, Klessig DF, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci , 2001, 6(4): 177-183. [9] L, García-Mata C, Graziano M, Pagnussat G. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol , 2003, 54(1): 109-136. [10] Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM. Nitric oxide represses the Arab i dopsis floral transition. Science , 2004, 305(5692): 1968- 1971. [11] K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I. Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol , 2008, 49(7): 1112-1121. [12] N, Arisan D. Nitric oxide signalling in plants. B ot R ev , 2009, 75(2): 203-229. [13] J, Klessig DF. Nitric oxide as a signal in plants. C urr O pin P lant B iol , 1999, 2(5): 369-374. [14] KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. T rends P lant S ci , 2011, 16(3): 160- 168. [15] DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol , 1992, 65: 287-346. [16] WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. B iochem J , 2001, 357(Pt 3): 593-615. [17] M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus . FEBS Lett , 1996, 398(2-3): 159-164. [18] MR, Ytterberg AJ, van Wijk KJ, Klessig DF. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell , 2003, 113(4): 469-482. [19] FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science , 2003, 302(5642): 100-103. [20] M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants-where do we stand? Physiol Plant , 2010, 138(4): 372-383. [21] M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric oxide synthase. J Biol Chem , 2008, 283(47): 32957-32967. [22] FQ. Response to Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J. Plant nitric oxide synthase: AtNOS1 is just the beginning. Trends Plant Sci , 2006, 11(11): 527-528. [23] T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J. Plant nitric oxide synthase: a never-ending story? Trends Plant Sci , 2006, 11(11): 524- 525. [24] JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ. Nitric oxide function and signalling in plant disease resistance. J Exp Bot , 2008, |