遗传 ›› 2024, Vol. 46 ›› Issue (10): 833-848.doi: 10.16288/j.yczz.24-179
万欣坤1,2(), 虞诗诚2, 梅松青2,3, 钟雯2,3(
)
收稿日期:
2024-06-18
修回日期:
2024-08-21
出版日期:
2024-08-30
发布日期:
2024-08-30
通讯作者:
钟雯,博士,研究员,博士生导师,研究方向:精准医学。E-mail: zhong_wen@gzlab.ac.cn作者简介:
万欣坤,博士研究生,专业方向:生物与医药。E-mail: xinkunw@hust.edu.cn
基金资助:
Xinkun Wan1,2(), Shicheng Yu2, Songqing Mei2,3, Wen Zhong2,3(
)
Received:
2024-06-18
Revised:
2024-08-21
Published:
2024-08-30
Online:
2024-08-30
Supported by:
摘要:
结直肠癌(colorectal cancer,CRC)是一种发生在结肠和直肠的消化道癌症,是全球第三常见癌症,也是癌症相关死亡的第二大原因。CRC的早期发现对于预防转移、降低死亡率、改善预后和提高患者生活质量至关重要。遗传因素在CRC的发生中扮演重要角色,可解释高达35%的疾病风险。全基因组关联研究已发现多个与CRC风险相关的遗传位点,但缺乏直接因果关系的证据。虽然传统的血液标志物如癌胚抗原(carcinoembryonic antigen,CEA)和糖类抗原19-9(CA19-9)已被广泛用于CRC诊断和监测,但在早期诊断应用中的灵敏度和准确性有限,仍需要开发新的能够反映遗传背景的生物标志物或其组合,以促进早期诊断和提高诊断准确性。同时,理解这些生物标志物的遗传机制对于揭示CRC的发病机制至关重要,并有助于开发更加精准的个体化治疗策略。孟德尔随机化(Mendelian randomization,MR)分析作为一种新兴的流行病学工具,通过减少观察性研究中存在的偏差问题,能够更精确地评估遗传变异与疾病间的因果关系。目前,MR分析已被用于评估多种血液标志物对CRC风险的因果影响,可更准确地表明血液标志物与CRC发病机制之间的潜在因果关系。本文综述了MR分析在CRC血液标志物研究中的应用,旨在为CRC的早期诊断和个体化治疗提供理论基础。
万欣坤, 虞诗诚, 梅松青, 钟雯. 孟德尔随机化分析在结直肠癌血液标志物遗传背景研究中的应用[J]. 遗传, 2024, 46(10): 833-848.
Xinkun Wan, Shicheng Yu, Songqing Mei, Wen Zhong. Application of Mendelian randomization analysis in investigating the genetic background of blood biomarkers for colorectal cancer[J]. Hereditas(Beijing), 2024, 46(10): 833-848.
表1
炎症和免疫标志物与CRC因果关系的MR分析结果"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
VEGF | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.352(1.019~1.315) | 0.024 |
Meng等l[ | 欧洲 | 218,792 | 正相关 | 1.17(1.02~1.35) | 0.026 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.173(1.019~1.351) | 0.026 | |
IL-12p70 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.273(1.133~1.430) | 0.0000468 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.27(1.13~1.43) | 0.00122 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.273(1.133~1.430) | 0.0000468 | |
IL-13 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.149(1.012~1.299) | 0.028 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.15(1.02~1.30) | 0.028 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.149(1.015~1.299) | 0.028 | |
Dong等[ | 欧洲 | 218,792 | 负相关 | 0.78(0.65~0.95) | 0.013 | |
IL-10 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.230(1.013~1.493) | 0.037 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.23(1.01~1.49) | 0.037 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.230(1.013~1.4913) | 0.037 | |
Ma等[ | 欧洲 | NA | 正相关 | 1.49(1.20~1.87) | 0.000431 | |
Dong等[ | 欧洲 | 218,792 | 正相关 | 1.40(1.18~1.65) | 0.000094 | |
IL-7 | Kong等[ | 欧洲 | 218,792 | 正相关 | 1.191(1.023~1.386) | 0.024 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 1.19(1.02~1.39) | 0.024 | |
Yang等[ | 欧洲 | 218,792 | 正相关 | 1.191(1.023~1.386) | 0.024 | |
M-CSF | Kong等[ | 欧洲 | 218,792 | 正相关 | 0.854(0.764~0.955) | 0.005 |
Meng等[ | 欧洲 | 218,792 | 正相关 | 0.85(0.76~0.96) | 0.005 | |
IL-12B | Meng等[ | 欧洲 | 218,792 | 正相关 | 1.19(1.00~1.42) | 0.046 |
CRP | Nimptsch等[ | 欧洲 | NA | 正相关 | 1.74(1.06~2.85) | NA |
Hua等[ | 欧洲 | 16,918 | 不相关 | NA | NA | |
Wang等[ | 欧洲 | 53,324 | 不相关 | 1.04(0.97~1.12) | 0.256 | |
Choi 等[ | 韩国 | 59,605 | 不相关 | NA | NA | |
IL-8 | Jiang等[ | 欧洲 | 177,028 | 负相关 | 0.65(0.43~0.98) | 0.041 |
IL-2 | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.76(0.63~0.92) | 0.0043 |
IL-17F | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.78(0.62~1.00) | 0.015 |
IL-31 | Dong等[ | 欧洲 | 218,792 | 负相关 | 0.88(0.79~0.98) | 0.023 |
IL-36α | Dong等[ | 欧洲 | 218,792 | 正相关 | 1.23(1.01~1.49) | 0.040 |
IL-17RD | Dong等[ | 欧洲 | 218,792 | 正相关 | 1.22(1.00~1.48) | 0.048 |
Resistin | Pham等[ | 欧洲 | 309,154 | 不相关 | 1.01(0.96~1.06) | 0.067 |
GDF-15 | Yeung等[ | 欧洲 | 387314 | 不相关 | 0.91(0.80~1.04) | NA |
表2
代谢和内分泌标志物与CRC因果关系的MR分析结果"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
Fasting insulin | Murphy等[ | 欧洲 | 112,373 | 正相关 | 1.65(1.15~2.36) | 0.035 |
Fasting glucose | Murphy等[ | 欧洲 | 112,373 | 不相关 | 1.04(0.88~1.23) | 0.81 |
HbA1c | Murphy等[ | 欧洲 | 112,373 | 正相关 | 1.09(1.00~1.19) | 0.08 |
TC | Iwagami等[ | 日本 | 45,978 | 正相关 | 1.15(1.01~1.32) | 0.042 |
HDL-C, | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.11(0.98~1.27) | 0.111 |
Triglycerides | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.06(0.90~1.26) | 0.484 |
LDL-C | Iwagami等[ | 日本 | 45,978 | 不相关 | 1.17(0.91~1.50) | 0.232 |
Apolipoprotein B | Liu等[ | 欧洲 | 218,792 | 正相关 | 1.188(1.001~1.411) | 0.0491 |
IGF1 | Murphy等[ | 欧洲 | 99,152 | 正相关 | 1.08(1.03~1.12) | 0.00033 |
Larsson等[ | 欧洲 | - | 正相关 | 1.11(1.01~1.22) | 0.03 | |
Larsson等[ | 日本 | - | 正相关 | 1.22(1.09~1.36) | 0.00039 | |
IGFBP3 | Murphy等[ | 欧洲 | 99,152 | 正相关 | 1.12(1.06~1.18) | 0.000042 |
SHBG | Dimou等[ | 欧洲 | 85,638 | 不相关 | NA | NA |
DHEAS | Jayarathna等[ | 欧洲 | 387,318 | 负相关 | 0.70(0.51~0.96) | 0.03 |
Adiponectin | Nimptsch等[ | 欧洲 | 2880 | 不相关 | 0.99(0.93~1.06) | NA |
表3
蛋白质和脂类代谢标志物与CRC因果关系的MR分析结果"
暴露 | 相关研究 | 人群 | 结局样本量 | 结果 | OR(95% CI) | P-value |
---|---|---|---|---|---|---|
Serum Albumin | Lv等[ | 日本 | 202,807 | 负相关 | 0.75(0.59~0.95) | NA |
GREM1 | Sun等[ | 欧洲 | 43199 | 正相关 | 1.14(1.10~1.18) | 1.55E-14 |
CLSTN3 | Sun等[ | 欧洲 | 43199 | 负相关 | 0.21(0.13~0.34) | 2.41E-10 |
CSF2RA | Sun等[ | 欧洲 | 43199 | 负相关 | 0.16(0.09~0.28) | 3.28E-10 |
CD86 | Sun等[ | 欧洲 | 43199 | 负相关 | 0.23(0.14~0.39) | 3.30E-8 |
VIMP | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00101(1.00008~1.00195) | 0.03327 |
TNFRSF11B | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00055(1.00007~1.00103) | 0.02346 |
C5orf38 | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00083(1.00014~1.00152) | 0.01877 |
SLC5A8 | Cai等[ | 欧洲 | 377,673 | 正相关 | 1.00252(1.00076~1.00428) | 0.00502 |
MICB | Cai等[ | 欧洲 | 377,673 | 负相关 | 0.99882(0.99785~0.99979) | 0.01764 |
Oleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.77(0.65~0.922) | 0.0039 |
Palmitoleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.36(0.15~0.84) | 0.018 |
Linoleic | May-Wilson等[ | 欧洲 | 27640 | 负相关 | 0.95(0.93~0.98) | 0.00037 |
Arachidonic acid | May-Wilson等[ | 欧洲 | 27640 | 正相关 | 1.05(1.02~1.07) | 0.00017 |
Stearic acid | May-Wilson等[ | 欧洲 | 27640 | 正相关 | 1.17(1.01~1.35) | 0.041 |
[1] | Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263. |
[2] | Brody H. Colorectal cancer. Nature, 2015, 521(7551): S1. |
[3] |
Heiss JA, Brenner H. Epigenome-wide discovery and evaluation of leukocyte DNA methylation markers for the detection of colorectal cancer in a screening setting. Clin Epigenetics, 2017, 9: 24.
doi: 10.1186/s13148-017-0322-x pmid: 28270869 |
[4] | Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 2000, 343(2): 78-85. |
[5] | Burt R. Inheritance of Colorectal Cancer. Drug Discov Today Dis Mech, 2007, 4(4): 293-300. |
[6] | Xin JY, Du ML, Gu DY, Jiang KW, Wang MY, Jin MJ, Hu YT, Ben S, Chen SL, Shao W, Li SW, Chu HY, Zhu LJ, Li C, Chen K, Ding KF, Zhang ZD, Shen HB, Wang ML. Risk assessment for colorectal cancer via polygenic risk score and lifestyle exposure: a large-scale association study of East Asian and European populations. Genome Med, 2023, 15(1): 4. |
[7] |
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, Qu CX, Melas M, Van Den Berg DJ, Wang HS, Tring S, Plummer SJ, Albanes D, Alonso MH, Amos CI, Anton K, Aragaki AK, Arndt V, Barry EL, Berndt SI, Bezieau S, Bien S, Bloomer A, Boehm J, Boutron-Ruault MC, Brenner H, Brezina S, Buchanan DD, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castelao JE, Chan AT, Chang-Claude J, Chanock SJ, Cheng I, Cheng YW, Chin LS, Church JM, Church T, Coetzee GA, Cotterchio M, Correa MC, Curtis KR, Duggan D, Easton DF, English D, Feskens EJM, Fischer R, FitzGerald LM, Fortini BK, Fritsche LG, Fuchs CS, Gago-Dominguez M, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Giovannucci EL, Gogarten SM, Gonzalez-Villalpando C, Gonzalez-Villalpando EM, Grady WM, Greenson JK, Gsur A, Gunter M, Haiman CA, Hampe J, Harlid S, Harju JF, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Huang SC, Huerta JM, Hudson TJ, Hunter DJ, Idos GE, Iwasaki M, Jackson RD, Jacobs EJ, Jee SH, Jenkins MA, Jia WH, Jiao S, Joshi AD, Kolonel LN, Kono S, Kooperberg C, Krogh V, Kuehn T, Küry S, LaCroix A, Laurie CA, Lejbkowicz F, Lemire M, Lenz HJ, Levine D, Li CI, Li L, Lieb W, Lin Y, Lindor NM, Liu YR, Loupakis F, Lu YC, Luh F, Ma J, Mancao C, Manion FJ, Markowitz SD, Martin V, Matsuda K, Matsuo K, McDonnell KJ, McNeil CE, Milne R, Molina AJ, Mukherjee B, Murphy N, Newcomb PA, Offit K, Omichessan H, Palli D, Cotoré JPP, Pérez-Mayoral J, Pharoah PD, Potter JD, Qu CH, Raskin L, Rennert G, Rennert HS, Riggs BM, Schafmayer C, Schoen RE, Sellers TA, Seminara D, Severi G, Shi W, Shibata D, Shu XO, Siegel EM, Slattery ML, Southey M, Stadler ZK, Stern MC, Stintzing S, Taverna D, Thibodeau SN, Thomas DC, Trichopoulou A, Tsugane S, Ulrich CM, van Guelpan B, Vijai J, Virtamo J, Weinstein SJ, White E, Win AK, Wolk A, Woods M, Wu AH, Wu KN, Xiang YB, Yen Y, Zanke BW, Zeng YX, Zhang B, Zubair N, Kweon SS, Figueiredo JC, Zheng W, Marchand LL, Lindblom A, Moreno V, Peters U, Casey G, Hsu L, Conti DV, Gruber SB. Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst, 2019, 111(2): 146-157.
doi: 10.1093/jnci/djy099 pmid: 29917119 |
[8] |
Lu YC, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai QY, Zeng CJ, Schmit SL, Shin A, Matsuo K, Jee SH, Kim DH, Kim J, Wen WQ, Shi JJ, Guo XY, Li BS, Wang N, Zhang B, Li XX, Shin MH, Li HL, Ren ZF, Oh JH, Oze I, Ahn YO, Jung KJ, Conti DV, Schumacher FR, Rennert G, Jenkins MA, Campbell PT, Hoffmeister M, Casey G, Gruber SB, Gao J, Gao YT, Pan ZZ, Kamatani Y, Zeng YX, Shu XO, Long JR, Matsuda K, Zheng W. Large-scale genome-wide association study of east Asians identifies loci associated with risk for colorectal cancer. Gastroenterology, 2019, 156(5): 1455-1466.
doi: S0016-5085(18)35385-X pmid: 30529582 |
[9] | Toiyama Y, Okugawa Y, Fleshman J, Boland CR, Goel A. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochim Biophys Acta Rev Cancer, 2018, 1870(2): 274-282. |
[10] |
Cornish AJ, Tomlinson IPM, Houlston RS. Mendelian randomisation: A powerful and inexpensive method for identifying and excluding non-genetic risk factors for colorectal cancer. Mol Aspects Med, 2019, 69: 41-47.
doi: S0098-2997(18)30118-3 pmid: 30710596 |
[11] |
Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Smith GD. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr, 2016, 103(4): 965-978.
pmid: 26961927 |
[12] |
Burgess S, Swanson SA, Labrecque JA. Are Mendelian randomization investigations immune from bias due to reverse causation? Eur J Epidemiol, 2021, 36(3): 253-257.
doi: 10.1007/s10654-021-00726-8 pmid: 33611685 |
[13] | Weith M, Beyer A. The next step in Mendelian randomization. eLife, 2023, 12: e86416. |
[14] | Nimptsch K, Aleksandrova K, Boeing H, Janke J, Lee YA, Jenab M, Bueno-de-Mesquita HB, Jansen EHJM, Tsilidis KK, Trichopoulou A, Weiderpass E, Wu CS, Overvad K, Tjønneland A, Boutron-Ruault MC, Dossus L, Racine A, Kaaks R, Canzian F, Lagiou P, Trichopoulos D, Palli D, Agnoli C, Tumino R, Vineis P, Panico S, Johansson A, Van Guelpen B, Khaw KT, Wareham N, Peeters PH, Quirós JR, García AV, Molina-Montes E, Dorronsoro M, Chirlaque MD, Gurrea AB, Key TJ, Duarte-Salles T, Stepien M, Gunter MJ, Riboli E, Pischon T. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer, 2015, 136(5): 1181-1192. |
[15] |
Murphy N, Song MY, Papadimitriou N, Carreras-Torres R, Langenberg C, Martin RM, Tsilidis KK, Barroso I, Chen J, Frayling TM, Bull CJ, Vincent EE, Cotterchio M, Gruber SB, Pai RK, Newcomb PA, Perez-Cornago A, Van Guelpen B, Vodicka P, Wolk A, Wu AH, Peters U, Chan AT, Gunter MJ. Associations between glycemic traits and colorectal cancer: A Mendelian randomization analysis. J Natl Cancer Inst, 2022, 114(5): 740-752.
doi: 10.1093/jnci/djac011 pmid: 35048991 |
[16] | Iwagami M, Goto A, Katagiri R, Sutoh Y, Koyanagi YN, Nakatochi M, Nakano S, Hanyuda A, Narita A, Shimizu A, Tanno K, Hozawa A, Kinoshita K, Oze I, Ito H, Yamaji T, Sawada N, Nakamura Y, Nakamura S, Kuriki K, Suzuki S, Hishida A, Kasugai Y, Imoto I, Suzuki M, Momozawa Y, Takeuchi K, Yamamoto M, Sasaki M, Matsuo K, Tsugane S, Wakai K, Iwasaki M. Blood lipids and the risk of colorectal cancer: Mendelian randomization analyses in the Japanese consortium of genetic epidemiology studies. Cancer Prev Res (Phila), 2022, 15(12): 827-836. |
[17] |
Murphy N, Carreras-Torres R, Song MY, Chan AT, Martin RM, Papadimitriou N, Dimou N, Tsilidis KK, Banbury B, Bradbury KE, Besevic J, Rinaldi S, Riboli E, Cross AJ, Travis RC, Agnoli C, Albanes D, Berndt SI, Bézieau S, Bishop DT, Brenner H, Buchanan DD, Onland-Moret NC, Burnett-Hartman A, Campbell PT, Casey G, Castellví-Bel S, Chang-Claude J, Chirlaque MD, de la Chapelle A, English D, Figueiredo JC, Gallinger SJ, Giles GG, Gruber SB, Gsur A, Hampe J, Hampel H, Harrison TA, Hoffmeister M, Hsu L, Huang WY, Huyghe JR, Jenkins MA, Keku TO, Kühn T, Kweon SS, Le Marchand L, Li CI, Li L, Lindblom A, Martín V, Milne RL, Moreno V, Newcomb PA, Offit K, Ogino S, Ose J, Perduca V, Phipps AI, Platz EA, Potter JD, Qu CH, Rennert G, Sakoda LC, Schafmayer C, Schoen RE, Slattery ML, Tangen CM, Ulrich CM, Van Guelpen B, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Wang HS, White E, Wolk A, Woods MO, Wu AH, Zheng W, Peters U, Gunter MJ. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomization analyses. Gastroenterology, 2020, 158(5): 1300-1312.e20.
doi: S0016-5085(19)41951-3 pmid: 31884074 |
[18] | Smith GD, Ebrahim S. Data dredging, bias, or confounding. BMJ, 2002, 325(7378): 1437-1438. |
[19] |
Thanassoulis G, O'Donnell CJ. Mendelian randomization: nature’s randomized trial in the post-genome era. JAMA, 2009, 301(22): 2386-2388.
doi: 10.1001/jama.2009.812 pmid: 19509388 |
[20] | Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet, 2014, 23(R1): R89-R98. |
[21] |
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8): 1133-1163.
doi: 10.1002/sim.3034 pmid: 17886233 |
[22] |
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, Evans DM, Smith GD. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep, 2017, 4(4): 330-345.
doi: 10.1007/s40471-017-0128-6 pmid: 29226067 |
[23] | Burgess S, Smith GD, Davies NM, Dudbridge F, Gill D, Glymour MM, Hartwig FP, Kutalik Z, Holmes MV, Minelli C, Morrison JV, Pan W, Relton CL, Theodoratou E. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2023, 4: 186. |
[24] |
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
doi: 10.1038/s41588-018-0099-7 pmid: 29686387 |
[25] | Hemani G, Bowden J, Smith GD. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet, 2018, 27(R2): R195-R208. |
[26] | Gala H, Tomlinson I. The use of Mendelian randomisation to identify causal cancer risk factors: promise and limitations. J Pathol, 2020, 250(5): 541-554. |
[27] | Gagnon E, Daghlas I, Zagkos L, Sargurupremraj M, Georgakis MK, Anderson CD, Cronje HT, Burgess S, Arsenault BJ, Gill D. Mendelian randomization applied to neurology: promises and challenges. Neurology, 2024, 102(4): e209128. |
[28] |
Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2): 512-525.
doi: 10.1093/ije/dyv080 pmid: 26050253 |
[29] |
Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology, 2017, 28(1): 30-42.
pmid: 27749700 |
[30] |
Bowden J, Smith GD, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
doi: 10.1002/gepi.21965 pmid: 27061298 |
[31] |
Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, Wallace C, Burgess S. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches. Am J Hum Genet, 2022, 109(5): 767-782.
doi: 10.1016/j.ajhg.2022.04.001 pmid: 35452592 |
[32] | Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet, 2014, 10(5): e1004383. |
[33] | Angrist JD, Imbens GW. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J Am Stat Assoc, 1995, 90(430): 431-442. |
[34] |
Burgess S, Scott RA, Timpson NJ, Smith GD, Thompson SG, EPIC-InterAct Consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol, 2015, 30(7): 543-552.
doi: 10.1007/s10654-015-0011-z pmid: 25773750 |
[35] |
Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol, 2016, 40(7): 597-608.
doi: 10.1002/gepi.21998 pmid: 27625185 |
[36] | Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care:2020 report of the Lancet Commission. Lancet, 2020, 396(10248): 413-446. |
[37] | Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Morón FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fiévet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, George-Hyslop PS, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossù P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer's Disease Initiative EADI, Genetic and Environmental Risk in Alzheimer's Disease, Alzheimer's Disease Genetic Consortium, Cohorts for Heart and Aging Research in Genomic Epidemiology, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet, 2013, 45(12): 1452-1458. |
[38] | Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, Palmer T, Schooling CM, Wallace C, Zhao QY, Smith GD. Mendelian randomization. Nat Rev Methods Primers, 2022, 2: 6. |
[39] |
Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol, 2015, 181(4): 251-260.
doi: 10.1093/aje/kwu283 pmid: 25632051 |
[40] |
Carter AR, Sanderson E, Hammerton G, Richmond RC, Smith GD, Heron J, Taylor AE, Davies NM, Howe LD. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol, 2021, 36(5): 465-478.
doi: 10.1007/s10654-021-00757-1 pmid: 33961203 |
[41] |
Staley JR, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. Genet Epidemiol, 2017, 41(4): 341-352.
doi: 10.1002/gepi.22041 pmid: 28317167 |
[42] |
Burgess S, Davies NM, Thompson SG, EPIC-InterAct Consortium. Instrumental variable analysis with a nonlinear exposure-outcome relationship. Epidemiology, 2014, 25(6): 877-885.
doi: 10.1097/EDE.0000000000000161 pmid: 25166881 |
[43] |
Song XY, Gao HC, Lin YY, Yao YK, Zhu S, Wang JJ, Liu Y, Yao XM, Meng GX, Shen N, Shi YF, Iwakura Y, Qian YC. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity, 2014, 40(1): 140-152.
doi: 10.1016/j.immuni.2013.11.018 pmid: 24412611 |
[44] |
Wu P, Wu D, Ni C, Ye J, Chen WZ, Hu GM, Wang Z, Wang CR, Zhang ZG, Xia WJ, Chen ZG, Wang K, Zhang T, Xu JH, Han YH, Zhang T, Wu XG, Wang JW, Gong WH, Zheng S, Qiu FM, Yan J, Huang J. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity, 2014, 40(5): 785-800.
doi: 10.1016/j.immuni.2014.03.013 pmid: 24816404 |
[45] |
Kryczek I, Lin YW, Nagarsheth N, Peng DJ, Zhao LL, Zhao ED, Vatan L, Szeliga W, Dou YL, Owens S, Zgodzinski W, Majewski M, Wallner G, Fang JY, Huang E, Zou WP. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity, 2014, 40(5): 772-784.
doi: 10.1016/j.immuni.2014.03.010 pmid: 24816405 |
[46] | Kong YQ, Wang XY, Xu HY, Liu SX, Qie R. A Mendelian randomization study on the causal association of circulating cytokines with colorectal cancer. PLoS One, 2023, 18(12): e0296017. |
[47] | Meng C, Sun LT, Shi JY, Li Y, Gao JL, Liu YS, Wei PY, Yang ZY, Yao HW, Zhang ZT. Exploring causal correlations between circulating levels of cytokines and colorectal cancer risk: A Mendelian randomization analysis. Int J Cancer, 2024, 155(1): 159-171. |
[48] | Yang ZS, Zhang ML, Zhang YF, Tang YT, Li YB, Zhang Y, Jian M, Jiang LX. Mendelian randomization investigation of the causal association between circulating cytokines and colorectal cancer. (2023-07-10) [2024-06-08]. https://www.researchsquare.com/article/rs-3116170/v1 . |
[49] | Ma MW, Zheng ZC, Li J, He YX, Kang WM, Ye X. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis. Front Microbiol, 2024, 15: 1309111. |
[50] | Zhou B, Shu B, Yang J, Liu J, Xi T, Xing YY. C-reactive protein, interleukin-6 and the risk of colorectal cancer: a meta-analysis. Cancer Causes Control, 2014, 25(10): 1397-1405. |
[51] | Hua XW, Dai JY, Lindström S, Harrison TA, Lin Y, Alberts SR, Alwers E, Berndt SI, Brenner H, Buchanan DD, Campbell PT, Casey G, Chang-Claude J, Gallinger S, Giles GG, Goldberg RM, Gunter MJ, Hoffmeister M, Jenkins MA, Joshi AD, Ma WJ, Milne RL, Murphy N, Pai RK, Sakoda LC, Schoen RE, Shi Q, Slattery ML, Song MY, White E, Le Marchand L, Chan AT, Peters U, Newcomb PA. Genetically predicted circulating C-reactive protein concentration and colorectal cancer survival: A Mendelian randomization consortium study. Cancer Epidemiol Biomarkers Prev, 2021, 30(7): 1349-1358. |
[52] |
Wang XL, Dai JY, Albanes D, Arndt V, Berndt SI, Bézieau S, Brenner H, Buchanan DD, Butterbach K, Caan B, Casey G, Campbell PT, Chan AT, Chen ZY, Chang-Claude J, Cotterchio M, Easton DF, Giles GG, Giovannucci E, Grady WM, Hoffmeister M, Hopper JL, Hsu L, Jenkins MA, Joshi AD, Lampe JW, Larsson SC, Lejbkowicz F, Li L, Lindblom A, Le Marchand L, Martin V, Milne RL, Moreno V, Newcomb PA, Offitt K, Ogino S, Pharoah PDP, Pinchev M, Potter JD, Rennert HS, Rennert G, Saliba W, Schafmayer C, Schoen RE, Schrotz-King P, Slattery ML, Song MY, Stegmaier C, Weinstein SJ, Wolk A, Woods MO, Wu AH, Gruber SB, Peters U, White E. Mendelian randomization analysis of C-reactive protein on colorectal cancer risk. Int J Epidemiol, 2019, 48(3): 767-780.
doi: 10.1093/ije/dyy244 pmid: 30476131 |
[53] | Choi CK, Yang JH, Shin MH, Cho SH, Kweon SS. No association between genetically predicted C-reactive protein levels and colorectal cancer survival in Korean: two-sample Mendelian randomization analysis. Epidemiol Health, 2023, 45: e2023039. |
[54] | Acevedo-León D, Gómez-Abril SÁ, Sanz-García P, Estañ-Capell N, Bañuls C, Sáez G. The role of oxidative stress, tumor and inflammatory markers in colorectal cancer patients: A one-year follow-up study. Redox Biol, 2023, 62: 102662. |
[55] |
Pastille E, Wasmer MH, Adamczyk A, Vu VP, Mager LF, Phuong NNT, Palmieri V, Simillion C, Hansen W, Kasper S, Schuler M, Muggli B, McCoy KD, Buer J, Zlobec I, Westendorf AM, Krebs P. The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunol, 2019, 12(4): 990-1003.
doi: 10.1038/s41385-019-0176-y pmid: 31165767 |
[56] | Chen FE, Qu M, Zhang F, Tan ZY, Xia QH, Hambly BD, Bao SS, Tao K. IL-36 s in the colorectal cancer: is interleukin 36 good or bad for the development of colorectal cancer? BMC cancer, 2020, 20(1): 92. |
[57] | Jiang HF, Liu YM, Zhou R, Feng Y, Yan L. Circulating interleukins and risk of colorectal cancer: a Mendelian randomization study. Scand J Gastroenterol, 2023, 58(12): 1466-1473. |
[58] | Dong JX, Jiang WJ, Zhang WJ, Hu RH, Huang ZY, Guo TH, Du T, Jiang XH. Genetic association of circulating interleukins and risk of colorectal cancer: A bidirectional Mendelian randomization study. Environ Toxicol, 2024, 39(5): 2706-2716. |
[59] | Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol, 2019, 25(31): 4383-4404. |
[60] | Yang G, Fan W, Luo BH, Xu ZG, Wang P, Tang SH, Xu PP, Yu MX. Circulating resistin levels and risk of colorectal cancer: A meta-analysis. Biomed Res Int, 2016, 2016: 7367485. |
[61] | Pham TT, Nimptsch K, Aleksandrova K, Jenab M, Reichmann R, Wu KN, Tjønneland A, Kyrø C, Schulze MB, Kaaks R, Katzke V, Palli D, Pasanisi F, Ricceri F, Tumino R, Krogh V, Roodhart J, Castilla J, Sánchez MJ, Colorado-Yohar SM, Harbs J, Rutegård M, Papier K, Aglago EK, Dimou N, Mayen-Chacon AL, Weiderpass E, Pischon T. Pre-diagnostic circulating resistin concentrations are not associated with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition study. Cancers (Basel), 2022, 14(22): 5499. |
[62] |
Pham TT, Nimptsch K, Papadimitriou N, Aleksandrova K, Jenab M, Gunter MJ, Marchand LL, Li L, Lynch BM, Castellví-Bel S, Phipps AI, Schmit SL, Brenner H, Ogino S, Giovannucci E, Pischon T. Genetically determined circulating resistin concentrations and risk of colorectal cancer: a two-sample Mendelian randomization study. J Cancer Res Clin Oncol, 2023, 149(16): 14889-14900.
doi: 10.1007/s00432-023-05193-0 pmid: 37599317 |
[63] |
Yeung SLA, Luo S, Schooling CM. The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia, 2019, 62(9): 1638-1646.
doi: 10.1007/s00125-019-4913-2 pmid: 31161347 |
[64] | Rinaldi S, Rohrmann S, Jenab M, Biessy C, Sieri S, Palli D, Tumino R, Mattiello A, Vineis P, Nieters A, Linseisen J, Pischon T, Boeing H, Hallmans G, Palmqvist R, Manjer J, Wirfält E, Crowe FL, Khaw KTT, Bingham S, Tjønneland A, Olsen A, Overvad K, Lund E, Skeie G, Clavel- Chapelon F, Boutron-Ruault MC, de Lauzon-Guillain B, Ardanaz E, Jakszyn P, Quiros JR, Chirlaque MD, Sanchez MJ, Dorronsoro M, Trichopoulou A, Lagiou P, Trichopoulos D, Bueno-de-Mesquita HB, Peeters PHM, Slimani N, Ferrari P, Byrnes GB, Riboli E, Kaaks R. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev, 2008, 17(11): 3108-3115. |
[65] |
Dashti SG, Viallon V, Simpson JA, Karahalios A, Moreno-Betancur M, English DR, Gunter MJ, Murphy N. Explaining the link between adiposity and colorectal cancer risk in men and postmenopausal women in the UK Biobank: A sequential causal mediation analysis. Int J Cancer, 2020, 147(7): 1881-1894.
doi: 10.1002/ijc.32980 pmid: 32181888 |
[66] | Peila R, Rohan TE. Diabetes, glycated hemoglobin, and risk of cancer in the UK Biobank study. Cancer Epidemiol Biomarkers Prev, 2020, 29(6): 1107-1119. |
[67] | Xu JM, Ye Y, Wu H, Duerksen-Hughes P, Zhang HH, Li PW, Huang J, Yang J, Wu YH, Xia DJ. Association between markers of glucose metabolism and risk of colorectal cancer. BMJ Open, 2016, 6(6): e011430. |
[68] | Lin J, Ridker PM, Pradhan A, Lee IM, Manson JE, Cook NR, Buring JE, Zhang SM. Hemoglobin A1c concentrations and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev, 2005, 14(12): 3010-3012. |
[69] | Pang YJ, Kartsonaki C, Guo Y, Chen YP, Yang L, Bian Z, Bragg F, Millwood IY, Shen LJ, Zhou SG, Liu JB, Chen JS, Li LM, Holmes MV, Chen ZM. Diabetes, plasma glucose and incidence of colorectal cancer in Chinese adults: a prospective study of 0.5 million people. J Epidemiol Community Health, 2018, 72(10): 919-925. |
[70] | Myte R, Gylling B, Häggström J, Häggström C, Zingmark C, Burström AL, Palmqvist R, Van Guelpen B. Metabolic factors and the risk of colorectal cancer by KRAS and BRAF mutation status. Int J Cancer, 2019, 145(2): 327-337. |
[71] |
Iso H, Ikeda A, Inoue M, Sato S, Tsugane S, JPHC Study Group. Serum cholesterol levels in relation to the incidence of cancer: the JPHC study cohorts. Int J Cancer, 2009, 125(11): 2679-2686.
doi: 10.1002/ijc.24668 pmid: 19544528 |
[72] | Yao X, Tian Z. Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control, 2015, 26(2): 257-268. |
[73] | Liu XW, Yu H, Yan GY, Xu BY, Sun MJ, Feng ML. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr, 2024, 63(2): 469-483. |
[74] |
Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst, 1999, 91(7): 620-625.
doi: 10.1093/jnci/91.7.620 pmid: 10203281 |
[75] |
Kaaks R, Toniolo P, Akhmedkhanov A, Lukanova A, Biessy C, Dechaud H, Rinaldi S, Zeleniuch-Jacquotte A, Shore RE, Riboli E. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst, 2000, 92(19): 1592-1600.
doi: 10.1093/jnci/92.19.1592 pmid: 11018095 |
[76] |
Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, Howard BV, Wylie-Rosett J, Anderson GL, Ho GYF, Kaplan RC, Li JX, Xue XN, Harris TG, Burk RD, Strickler HD. Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer Res, 2008, 68(1): 329-337.
doi: 10.1158/0008-5472.CAN-07-2946 pmid: 18172327 |
[77] |
Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S, Japan Public Health Center-based Prospective Study Group. Plasma C-peptide, insulin-like growth factor-I, insulin-like growth factor binding proteins and risk of colorectal cancer in a nested case-control study: the Japan public health center-based prospective study. Int J Cancer, 2007, 120(9): 2007-2012.
doi: 10.1002/ijc.22556 pmid: 17266031 |
[78] |
Palmqvist R, Stattin P, Rinaldi S, Biessy C, Stenling R, Riboli E, Hallmans G, Kaaks R. Plasma insulin, IGF-binding proteins-1 and -2 and risk of colorectal cancer: a prospective study in northern Sweden. Int J Cancer, 2003, 107(1): 89-93.
doi: 10.1002/ijc.11362 pmid: 12925961 |
[79] |
Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, Boeing H, Pischon T, Panico S, Agnoli C, Palli D, Tumino R, Vineis P, Peeters PHM, van Gils CH, Bueno-de-Mesquita BH, Vrieling A, Allen NE, Roddam A, Bingham S, Khaw KT, Manjer J, Borgquist S, Dumeaux V, Gram IT, Lund E, Trichopoulou A, Makrygiannis G, Benetou V, Molina E, Suárez ID, Gurrea AB, Gonzalez CA, Tormo MJ, Altzibar JM, Olsen A, Tjonneland A, Grønbaek H, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Morois S, Slimani N, Boffetta P, Jenab M, Riboli E, Kaaks R. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer, 2010, 126(7): 1702-1715.
doi: 10.1002/ijc.24927 pmid: 19810099 |
[80] | Probst-Hensch NM, Yuan JM, Stanczyk FZ, Gao YT, Ross RK, Yu MC. IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. Br J Cancer, 2001, 85(11): 1695-1699. |
[81] | Larsson SC, Carter P, Vithayathil M, Kar S, Mason AM, Burgess S. Insulin-like growth factor-1 and site-specific cancers: A Mendelian randomization study. Cancer Med, 2020, 9(18): 6836-6842. |
[82] | Dimou N, Mori N, Harlid S, Harbs J, Martin RM, Smith-Byrne K, Papadimitriou N, Bishop DT, Casey G, Colorado-Yohar SM, Cotterchio M, Cross AJ, Le Marchand L, Lin Y, Offit K, Onland-Moret NC, Peters U, Potter JD, Rohan TE, Weiderpass E, Gunter MJ, Murphy N. Circulating levels of testosterone, sex hormone-binding globulin, and colorectal cancer risk: Observational and Mendelian randomization analyses. Cancer Epidemiol Biomarkers Prev, 2021, 30(7): 1336-1348. |
[83] | Jayarathna DK, Rentería ME, Kho PF, Batra J, Gandhi NS. Dehydroepiandrosterone sulfate and colorectal cancer risk: A Mendelian randomization analysis. Twin Res Hum Genet, 2022, 25(4-5): 180-186. |
[84] |
Aleksandrova K, Boeing H, Jenab M, Bueno-de-Mesquita HB, Jansen E, Fedirko V, Rinaldi S, Romieu I, Riboli E, Romaguera D, Westphal S, Overvad K, Tjønneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kaaks R, Lukanova A, Trichopoulou A, Lagiou P, Trichopoulos D, Agnoli C, Mattiello A, Saieva C, Vineis P, Tumino R, Peeters PH, Argüelles M, Bonet C, Sánchez MJ, Dorronsoro M, Huerta JM, Barricarte A, Palmqvist R, Hallmans G, Khaw KT, Wareham N, Allen NE, Crowe FL, Pischon T. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis, 2012, 33(6): 1211-1218.
doi: 10.1093/carcin/bgs133 pmid: 22431719 |
[85] | Song MY, Zhang XH, Wu KN, Ogino S, Fuchs CS, Giovannucci EL, Chan AT. Plasma adiponectin and soluble leptin receptor and risk of colorectal cancer: a prospective study. Cancer Prev Res (Phila), 2013, 6(9): 875-885. |
[86] |
Nimptsch K, Song MY, Aleksandrova K, Katsoulis M, Freisling H, Jenab M, Gunter MJ, Tsilidis KK, Weiderpass E, Bueno-De-Mesquita HB, Chong DQ, Jensen MJ, Wu CS, Overvad K, Kühn T, Barrdahl M, Melander O, Jirström K, Peeters PH, Sieri S, Panico S, Cross AJ, Riboli E, Van Guelpen B, Myte R, Huerta JM, Rodriguez- Barranco M, Quirós JR, Dorronsoro M, Tjønneland A, Olsen A, Travis R, Boutron-Ruault MC, Carbonnel F, Severi G, Bonet C, Palli D, Janke J, Lee YA, Boeing H, Giovannucci EL, Ogino S, Fuchs CS, Rimm E, Wu KN, Chan AT, Pischon T. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. Eur J Epidemiol, 2017, 32(5): 419-430.
doi: 10.1007/s10654-017-0262-y pmid: 28550647 |
[87] | Sun LC, Chu KS, Cheng SC, Lu CY, Kuo CH, Hsieh JS, Shih YL, Chang SJ, Wang JY. Preoperative serum carcinoembryonic antigen, albumin and age are supplementary to UICC staging systems in predicting survival for colorectal cancer patients undergoing surgical treatment. BMC Cancer, 2009, 9: 288. |
[88] | Dixon MR, Haukoos JS, Udani SM, Naghi JJ, Arnell TD, Kumar RR, Stamos MJ. Carcinoembryonic antigen and albumin predict survival in patients with advanced colon and rectal cancer. Arch Surg, 2003, 138(9): 962-966. |
[89] | González-Trejo S, Carrillo JF, Carmona-Herrera DD, Baz-Gutiérrez P, Herrera-Goepfert R, Núñez G, Ochoa- Carrillo FJ, Gallardo-Rincón D, Aiello-Crocifoglio V, Oñate-Ocaña LF. Baseline serum albumin and other common clinical markers are prognostic factors in colorectal carcinoma: A retrospective cohort study. Medicine (Baltimore), 2017, 96(15): e6610. |
[90] | He MM, Fang Z, Hang D, Wang F, Polychronidis G, Wang L, Lo CH, Wang K, Zhong R, Knudsen MD, Smith SG, Xu RH, Song MY. Circulating liver function markers and colorectal cancer risk: A prospective cohort study in the UK Biobank. Int J Cancer, 2021, 148(8): 1867-1878. |
[91] | Ghuman S, Van Hemelrijck M, Garmo H, Holmberg L, Malmström H, Lambe M, Hammar N, Walldius G, Jungner I, Wulaningsih W. Serum inflammatory markers and colorectal cancer risk and survival. Br J Cancer, 2017, 116(10): 1358-1365. |
[92] | Kühn T, Sookthai D, Graf ME, Schübel R, Freisling H, Johnson T, Katzke V, Kaaks R. Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study. Br J Cancer, 2017, 117(10): 1572-1579. |
[93] |
Lv LSS, Sun XH, Liu B, Song J, Wu DJH, Gao Y, Li AL, Hu XQ, Mao YY, Ye D. Genetically predicted serum albumin and risk of colorectal cancer: A bidirectional Mendelian randomization study. Clin Epidemiol, 2022, 14: 771-778.
doi: 10.2147/CLEP.S367547 pmid: 35761866 |
[94] | Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet, 2021, 22(1): 19-37. |
[95] |
Sun J, Zhao JH, Jiang FY, Wang LJ, Xiao Q, Han FY, Chen J, Yuan S, Wei JS, Larsson SC, Zhang HH, Dunlop MG, Farrington SM, Ding KF, Theodoratou E, Li X. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med, 2023, 15(1): 75.
doi: 10.1186/s13073-023-01229-9 pmid: 37726845 |
[96] | Cai YX, Wu YQ, Liu J, Pan HL, Deng WH, Sun WJ, Xie CY, Huang XF. Proteome-wide analysis reveals potential therapeutic targets for Colorectal cancer: a two-sample mendelian randomization study. BMC Cancer, 2023, 23(1): 1188. |
[97] |
May-Wilson S, Sud A, Law PJ, Palin K, Tuupanen S, Gylfe A, Hänninen UA, Cajuso T, Tanskanen T, Kondelin J, Kaasinen E, Sarin AP, Eriksson JG, Rissanen H, Knekt P, Pukkala E, Jousilahti P, Salomaa V, Ripatti S, Palotie A, Renkonen-Sinisalo L, Lepistö A, Böhm J, Mecklin JP, Al-Tassan NA, Palles C, Farrington SM, Timofeeva MN, Meyer BF, Wakil SM, Campbell H, Smith CG, Idziaszczyk S, Maughan TS, Fisher D, Kerr R, Kerr D, Passarelli MN, Figueiredo JC, Buchanan DD, Win AK, Hopper JL, Jenkins MA, Lindor NM, Newcomb PA, Gallinger S, Conti D, Schumacher F, Casey G, Aaltonen LA, Cheadle JP, Tomlinson IP, Dunlop MG, Houlston RS. Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. Eur J Cancer, 2017, 84: 228-238.
doi: S0959-8049(17)31154-1 pmid: 28829991 |
[1] | 唐恒磊, 郑树涛, 李友, 钟望涛. 心源性卒中的遗传学研究进展[J]. 遗传, 2024, 46(5): 373-386. |
[2] | 张星雨, 祝天喻, 张清荣, 郭雪江, 王铖, 靳光付, 胡志斌. 精子发生障碍的遗传学研究进展[J]. 遗传, 2021, 43(5): 473-486. |
[3] | 李以格, 张丹丹. 后GWAS时代结直肠癌致病SNP功能机制的研究进展[J]. 遗传, 2021, 43(3): 203-214. |
[4] | 曹岚, 李志强, 师咏勇, 刘赟. 端粒长度与2型糖尿病:孟德尔随机化研究与多基因风险评分分析[J]. 遗传, 2020, 42(9): 882-888. |
[5] | 秦丽丽, 李毅坚, 梁兆端, 陈蕾, 李文慧, 陈超, 黄亚灵, 张乐, 刘松明, 邱思, 葛玉萍, 彭文婷, 林欣欣, 张秀清, 董旋, 李波. 基于体细胞突变数据库筛选免疫原性结直肠癌高频新抗原的方法[J]. 遗传, 2020, 42(6): 599-612. |
[6] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[7] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[8] | 郑敏, 麻骏武. 高尿酸血症和痛风的遗传学研究进展[J]. 遗传, 2016, 38(4): 300-313. |
[9] | 杨丽华,董琢,龚朝辉. 细胞外微RNA:一种新型的肺癌分子生物标志物[J]. 遗传, 2012, 34(6): 651-658. |
[10] | 李会晨,冯会媛,张锡朋,刘蕊,马东旺,秦海,周毅,俞林. 天津地区人群hMLH1和hMSH2基因多态性与散发性结直肠癌易感性的关系[J]. 遗传, 2010, 32(12): 1241-1246. |
[11] | 乞宗泰,邓黎莉,黄欢,赵建华,周国华. 粪便RNA的检测在大肠癌早期诊断中的应用[J]. 遗传, 2010, 32(10): 994-1002. |
[12] | 朱益民,林洁,陈俭,黄琼,邵丽娜,来茂德. Staufen基因在结直肠癌组织中的表达[J]. 遗传, 2005, 27(5): 705-709. |
[13] | 辜士扬,李蒙茹,张秀玲. 制备绒毛细胞染色体的研究[J]. 遗传, 1996, 18(5): 39-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: