遗传

• 综述 •    

碱基编辑技术及其在斑马鱼中的开发应用

郑少辉1,刘洋2,夏新欣2,刘彦梅1   

  1. 1.华南师范大学生命科学学院,广州 510631

    2.华南师范大学脑认知与教育科学教育部重点实验室,脑科学与康复医学研究院,广东省心理健康与认知科学重点实验室,广州 510631
  • 收稿日期:2025-05-30 修回日期:2025-07-20 出版日期:2025-08-28 发布日期:2025-08-28
  • 基金资助:
    国家自然科学基金项目(编号:32070819)资助

Advances in base editing technology and the construction of precise zebrafish disease models

Shaohui Zheng1, Yang Liu2, Xinxin Xia2, Yanmei Liu1   

  1. 1. School of Life Sciences, South China Normal University, Guangzhou, 510631, China

    2. Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
  • Received:2025-05-30 Revised:2025-07-20 Published:2025-08-28 Online:2025-08-28
  • Supported by:
    Supported by the National Natural Science Foundation of China (No. 32070819)

摘要: 单核苷酸变异是人类遗传疾病的主要致病因素之一,在所有致病突变类型中占据显著比例。在动物模型中深入研究这类突变的致病意义对于理解疾病机制和开发治疗方法至关重要。而此类研究的进展在很大程度上依赖于基因编辑技术的不断创新与发展。近年来,基于CRISPR/Cas9系统的碱基编辑技术应运而生,它能够精确实现单个碱基的特异性转换。凭借其高效性和便捷性,碱基编辑技术已被广泛应用于基因治疗、动物模型构建以及分子育种等多个领域,为生命科学研究和医学应用带来了新的突破和机遇。另一方面,斑马鱼(Danio rerio)凭借其体型小、产卵多、胚胎透明、体外发育等优势,在疾病机制和药物筛选研究中作为一种理想的模式生物发挥着重要作用。本文系统综述了基于CRISPR/Cas9的碱基编辑技术的发展历程,介绍了新型编辑工具的开发,并深入探讨了碱基编辑技术在构建斑马鱼精准模型中的应用与发展。

关键词: 基因编辑, CRISPR/Cas9, 碱基编辑, 斑马鱼, 疾病模型

Abstract: Single nucleotide variants (SNVs) are among the primary pathogenic factors of human genetic diseases, accounting for a significant proportion of all mutation types. Conducting in-depth research on the pathogenic significance of these mutations in animal models is essential for understanding disease mechanisms and developing therapeutic strategies. The progress of such research largely depends on the continuous innovation and advancement of gene editing technologies. In recent years, base editing technology based on the CRISPR/Cas9 system has emerged, enabling precise conversion of individual nucleotides. Owing to its efficiency and convenience, base editing has been widely applied in gene therapy, the construction of animal models, and molecular breeding, bringing new breakthroughs and opportunities to life sciences and medical research. Zebrafish, with their advantages of small size, high fecundity, transparent embryos, and external development, have become an ideal model organism for studying disease mechanisms and drug screening. In this review, we summarize the development of CRISPR/Cas9-based base editing technologies, highlight the emergence of novel editing tools, and explore the application and progress of base editing in constructing precise zebrafish disease models.

Key words: genome editing, CRISPR/Cas9, base editing, zebrafish, disease model