[1] Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci, 2003, 8(12): 570–575.
[2] 佘朝文, 宋运淳. 植物着丝粒结构和功能的研究进展. 遗传, 2006, 28(12): 1597–1606.
[3] Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14(8): 1691–1704.
[4] Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang JM, Dawe RK. Centromeric retroelements and satellites interact with maize kineto-chore protein CENH3. Plant Cell, 2002, 14(11): 2825–2836.
[5] Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang, JM. Chromatin immunoprecipitation reveals that the 180 bp satellite repeat is the key functional DNA ele-ment of Arabidopsis thaliana centromeres. Genetics, 2003, 163(3): 1221–1225.
[6] Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36(2): 138–145.
[7] Nagaki K, Kashihara K, Murata M. Visualization of dif-fuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell, 2005, 17(7): 1886–1893.
[8] Nagaki K, Murata M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res, 2005, 13(2): 195–203.
[9] Gindullis F, Desel C, Galasso I, Schmidt T. The large- scale organization of the centromeric region in Beta spe-cies. Genome Res, 2001, 11(2): 253–265.
[10] Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 2004, 16(3): 571–581.
[11] Kamm A, Schmidt T, Heslop-Harrison JS. Molecular and physical organization of highly repetitive, undermethy-lated DNA from Pennisetum glaucum. Mol Gen Genet, 1994, 244(4): 420–425.
[12] Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationship between Arabidopsis species. Plant Mol Biol, 1995, 27(5): 853–862.
[13] Harrison GE, Heslop-Harrison JS. Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet, 1995, 90(2): 157–165.
[14] Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J. Cloning and characterization of a centromere-specific re-petitive DNA element from Sorghum bicolor. Theor Appl Genet, 1998, 96(6–7): 832–839.
[15] Hass BL, Pires JC, Porter R, Phillips RL, Jackson SA. Comparative genetics at the gene and chromosome levels between rice (Oryza sativa) and wildrice (Zizania palustris). Theor Appl Genet, 2003, 107(5): 773–782.
[16] Zhang W, Yi C, Bao W, Liu B, Cui J, Yu H, Cao X, Gu M, Liu M, Cheng Z. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol, 2005, 139(1): 306–315.
[17] Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA, 2005, 102(33): 11793–11798.
[18] Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS. Characterization of the cen-tromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J, 2007, 49(2): 173–183.
[19] Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weis-shaar B, Schmidt T. Diversity of a complex centromeric satellite and molecular characterization of dispersed se-quence families in sugar beet (Beta vulgaris). Ann Bot (Lond), 2008, 102(4): 521–530.
[20] Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G. A cereal centromeric sequence. Chromosoma, 1996, 105(5): 261–268.
[21] Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC. A conserved repetitive DNA ele-ment located in the centromeres of cereal chromosomes. Proc Natl Acad Sci USA, 1996, 93(24): 14210–14213.
[22] Presting GG, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J, 1998, 16(6): 721–728.
[23] Langdon T, Seago C, Mende M, Leggett M, Thomas H, Forster JW, Jones RN, Jenkins G. Retrotransposon evolu-tion in diverse plant genomes. Genetics, 2000, 156(1): 313–325.
[24] Ananiev EV, Phillips RL, Rines HW. Chromosome-specific molecular organization of maize (Zea mays L.) centro-meric regions. Proc Natl Acad Sci USA, 1998, 95(22): 13073–13078.
[25] Lamb JC, Birchler JA. Retroelement genome painting: cyto-logical visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics, 2006, 173(2): 1007–1021.
[26] Song YC, Liu LH, Ding Y, Tian XB, Yao Q, Meng L, He CR, Xu MS. Comparisons of G-banding patterns in six species of the Poaceae. Hereditas, 1994, 121(1): 31–38.
[27] Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics, 2003, 163(2): 759–770.
[28] She CW, Liu JY, Song YC. CPD staining: an effective technique for detection of NORs and other GC-rich chro-mosomal regions in plants. Biotech Histochem, 2006, 81(1): 13–21.
[29] Bao W, Zhang W, Yang Q, Zhang Y, Han B, Gu M, Xue Y, Cheng Z. Diversity of centromeric repeats in two closely related wild rice species, Oryza officinalis and Oryza rhizomatis. Mol Genet Genomics, 2006, 275(5): 421–430.
[30] Zwick MS, Islam-Faridi MN, Zhang HB, Hodnett GL, Gomez MI, Kim JS, Price HJ, Stelly DM. Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot, 2000, 87(12): 1757–1764.
[31] Doebley JF, Iltis HH. Taxonomy of Zea. 1. Subgeneric classification with key to taxa. Am J Bot, 1980, 67(6): 982–993.
[32] Iltis HH, Doebley JF. Taxonomy of Zea (Gramineae). 2. Subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot, 1980, 67(6): 994–1004.
[33] Meyers BC, Tingey SV, Morgante M. Abundance, distri-bution, and transcriptional activity of repetitive elements in the maize genome. Genome Res, 2001, 11(10): 1660–1676.
[34] 刘纪麟. 玉米育种学. 北京: 农业出版社, 1991, 2–11.
[35] Kellogg EA, Watson L. Phylogenetic studies of a large data set. I. Bambusoideae, Andropogodeae and Pooideae (Gramineae). Bot Rev, 1993, 59(4): 273–343.
[36] Hilton H, Gaut BS. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. Genetics, 1998, 150(2): 863–872.
[37] Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Ben-netzen J, Messing J. Close split of sorghum and maize ge-nome progenitors. Genome Res, 2004, 14(10A): 1916–1923.
[38] Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X. Structure and dynamics of retrotransposons at wheat centromeres and pericentro-meres. Chromosoma, 2008, 117(5): 445–456.
[39] Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol, 2005, 22(4): 845–855.
[40] Sharma A, Presting GG. Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Mol Genet Genomics, 2008, 279(2): 133–147.
[41] Ma J, Jackson SA. Retrotransposon accumulation and sat-ellite amplification mediated by segmental duplication fa-cilitate centromere expansion in rice. Genome Res, 2006, 16(2): 251–259. |