[1] Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci, 2003, 8(12): 570–575.
[2] 佘朝文, 宋运淳. 植物着丝粒结构和功能的研究进展. 遗传, 2006, 28(12): 1597–1606.
[3] Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14(8): 1691–1704.
[4] Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang JM, Dawe RK. Centromeric retroelements and satellites interact with maize kineto-chore protein CENH3. Plant Cell, 2002, 14(11): 2825–2836.
[5] Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang, JM. Chromatin immunoprecipitation reveals that the 180 bp satellite repeat is the key functional DNA ele-ment of Arabidopsis thaliana centromeres. Genetics, 2003, 163(3): 1221–1225.
[6] Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36(2): 138–145.
[7] Nagaki K, Kashihara K, Murata M. Visualization of dif-fuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell, 2005, 17(7): 1886–1893.
[8] Nagaki K, Murata M. Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res, 2005, 13(2): 195–203.
[9] Gindullis F, Desel C, Galasso I, Schmidt T. The large- scale organization of the centromeric region in Beta spe-cies. Genome Res, 2001, 11(2): 253–265.
[10] Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell, 2004, 16(3): 571–581.
[11] Kamm A, Schmidt T, Heslop-Harrison JS. Molecular and physical organization of highly repetitive, undermethy-lated DNA from Pennisetum glaucum. Mol Gen Genet, 1994, 244(4): 420–425.
[12] Kamm A, Galasso I, Schmidt T, Heslop-Harrison JS. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationship between Arabidopsis species. Plant Mol Biol, 1995, 27(5): 853–862.
[13] Harrison GE, Heslop-Harrison JS. Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet, 1995, 90(2): 157–165.
[14] Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J. Cloning and characterization of a centromere-specific re-petitive DNA element from Sorghum bicolor. Theor Appl Genet, 1998, 96(6–7): 832–839.
[15] Hass BL, Pires JC, Porter R, Phillips RL, Jackson SA. Comparative genetics at the gene and chromosome levels between rice (Oryza sativa) and wildrice (Zizania palustris). Theor Appl Genet, 2003, 107(5): 773–782.
[16] Zhang W, Yi C, Bao W, Liu B, Cui J, Yu H, Cao X, Gu M, Liu M, Cheng Z. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol, 2005, 139(1): 306–315.
[17] Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA, 2005, 102(33): 11793–11798.
[18] Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS. Characterization of the cen-tromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J, 2007, 49(2): 173–183.
[19] Menzel G, D |