[1] Tremethick DJ. Higher-order structures of chromatin:the elusive 30nm fiber. Cell, 2007, 128(4): 651–654.
[2] Racki LR, Narlikar GJ. ATP-dependent chromatin remod-eling enzymes: two heads are not better, just different. Curr Opin Genet Dev, 2008, 18(2): 137–144.
[3] Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med, 2007, 13(9): 363–372.
[4] Barrett RM, Wood MA. Beyond transcription factors: The role of chromatin modifying enzymes in regulating tran-scription required for memory. Learn Mem, 2008, 15(7): 460–467.
[5] Taverna SD, Li H, Ruthenburg AJ, Allis CD, Phatel DJ. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers. Nat Struct Mol Biol, 2007, 14(11): 1025–1040.
[6] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705.
[7] Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell, 2007, 128(4): 707–719.
[8] Gangaraju VK, Bartholomew B. Mechanisms of ATP de-pendent chromatin remodeling. Mutat Res, 2007, 618(1–2): 3–17.
[9] Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2 and SWI3 genes, which encode a global activator of transcription. Cell, 1992, 68(3): 573–583.
[10] Trotter KW, Archer TK. The BRG1 transcriptional co-regulator. Nucleic Recept Signal, 2008, 6: e004.
[11] Chandrasekaran R, Thompson M. Polybromo-1-bromo-do- mains bind histone H3 at specific acetyl-lysine positions. Biochem Biophys Res Commun, 2007, 355(3): 661–666.
[12] Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X, Wu J, Shi Y. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry, 2007, 46(8): 2100–2110.
[13] Belandia B, Parker MG. Nuclear receptors: a rendezvous for chromatin remodeling factors. Cell, 2003, 114(3): 277–280.
[14] Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature, 1999, 400(6746): 784–787.
[15] Sudarsanam P, Winston F. The Swi/Snf family nu-cleosome-remodeling complexes and transcriptional con-trol. Trends Genet, 2000, 16(8): 345–351.
[16] Längst G, Bonte EJ, Corona DF, Becker PB. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell, 1999, 97(7): 843–852.
[17] Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature, 1999, 400(6746): 784–787.
[18] Guyon JR, Narlikar GJ, Sullivan EK, Kingston RE. Sta-bility of a human SWI-SNF remodeled nucleosomal array. Mol Cell Biol, 2001, 21(4): 1132–1144.
[19] Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 1994, 370(6489): 477–481.
[20] Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet, 2008, 9(1): 15–26.
[21] Fan HY, He X, Kingston RE, Narlikar GJ. Distinct strate-gies to make nucleosomal DNA accessible. Mol Cell, 2003, 11(5): 1311–1322.
[22] Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, Längst G. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol, 2005, 12(8): 683–690.
[23] Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcrip-tion. Cell, 2002, 108(4): 475–487.
[24] Gutiérrez JL, Chandy M, Carrozza MJ, Workman JL. Ac-tivation domains drive nucleosome eviction by SWI/SNF. EMBO J, 2007, 26(3): 730–740.
[25] Trotter KW, Archer TK. Nuclear receptors and chromatin remodeling machinery. Mol Cell Endocrinol, 2007, 265–266: 162–167.
[26] Biddie SC, Hager GL. Glucocorticoid receptor dynamics and gene regulation. Stress, 2009, 12(3): 193–205.
[27] George AA, Schiltz RL, Hager GL. Dynamic access of the glucocorticoid receptor to response elements in chromatin. Int J Biol, 2009, 41(1): 214–224.
[28] Peterson CL, Workman JL. Promoter targeting and chro-matin remodeling by the SWI/SNF complex. Curr Opin Genet Dev, 2000, 10(2): 187–192.
[29] Ohkawa Y, Yoshimura S, Higashi C, Marfella CG, Dacwag CS, Tachibana T, Imbalzano AN. Myogenin and the SWI/SNF ATPase Brg1 maintain myogenic gene ex-pression at different stages of skeletal myogenesis. J Biol Chem, 2007, 282(9): 6564–6570.
[30] Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsuki-yama T. The Isw2 chromatin remodeling complex re-presses early meiotic genes upon recruitment by Ume6p. Cell, 2000, 103(3): 423–433.
[31] Zhang HS, Dean DC. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene, 2001, 20(24): 3134–3138.
[32] Zhang B, Chambers KJ, Faller DV, Wang S. Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene, 2007, 26(50): 7153–7157.
[33] DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol Cell Biol, 2000, 20(20): 7541–7549.
[34] Daniel JA, Grant PA. Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat Res, 2007, 618(1–2): 135–148.
[35] Krebs JE, Fry CJ, Samuels ML, Peterson CL. Global role for chromatin remodeling enzymes in mitotic gene ex-pression. Cell, 2000, 102(5): 587–598.
[36] Workman JL, Kingston RE. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science, 1992, 258(5089): 1780–1784.
[37] Kulaeva OI, Gaykalova DA, Studitsky VM. Transcription through chromatin by RNA polymerase II: Histone dis-placement and exchange. Mutat Res, 2007, 618(1–2): 116–129.
[38] Armstrong JA. Negotiating the nucleosome:factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol, 2007, 85(4): 426–434. |