[1] Tremethick DJ. Higher-order structures of chromatin:the elusive 30nm fiber. Cell, 2007, 128(4): 651–654.
[2] Racki LR, Narlikar GJ. ATP-dependent chromatin remod-eling enzymes: two heads are not better, just different. Curr Opin Genet Dev, 2008, 18(2): 137–144.
[3] Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med, 2007, 13(9): 363–372.
[4] Barrett RM, Wood MA. Beyond transcription factors: The role of chromatin modifying enzymes in regulating tran-scription required for memory. Learn Mem, 2008, 15(7): 460–467.
[5] Taverna SD, Li H, Ruthenburg AJ, Allis CD, Phatel DJ. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers. Nat Struct Mol Biol, 2007, 14(11): 1025–1040.
[6] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705.
[7] Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell, 2007, 128(4): 707–719.
[8] Gangaraju VK, Bartholomew B. Mechanisms of ATP de-pendent chromatin remodeling. Mutat Res, 2007, 618(1–2): 3–17.
[9] Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2 and SWI3 genes, which encode a global activator of transcription. Cell, 1992, 68(3): 573–583.
[10] Trotter KW, Archer TK. The BRG1 transcriptional co-regulator. Nucleic Recept Signal, 2008, 6: e004.
[11] Chandrasekaran R, Thompson M. Polybromo-1-bromo-do- mains bind histone H3 at specific acetyl-lysine positions. Biochem Biophys Res Commun, 2007, 355(3): 661–666.
[12] Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X, Wu J, Shi Y. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry, 2007, 46(8): 2100–2110.
[13] Belandia B, Parker MG. Nuclear receptors: a rendezvous for chromatin remodeling factors. Cell, 2003, 114(3): 277–280.
[14] Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature, 1999, 400(6746): 784–787.
[15] Sudarsanam P, Winston F. The Swi/Snf family nu-cleosome-remodeling complexes and transcriptional con-trol. Trends Genet, 2000, 16(8): 345–351.
[16] Längst G, Bonte EJ, Corona DF, Becker PB. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell, 1999, 97(7): 843–852.
[17] Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature, 1999, 400(6746): 784–787.
[18] Guyon JR, Narlikar GJ, Sullivan EK, Kingston RE. Sta-bility of a human SWI-SNF remodeled nucleosomal array. Mol Cell Biol, 2001, 21(4): 1132–1144.
[19] Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 1994, 370(6489): 477–481.
[20] Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet, 2008, 9(1): 15–26.
[21] Fan HY, He X, Kingston RE, Narlikar GJ. Distinct strate-gies to make nucleosomal DNA accessible. Mol Cell, 2003, 11(5): 1311–1322.
[22] Strohner R, Wachsmuth M, Dachauer K, Mazurkiewicz J, Hochstatter J, Rippe K, Längst G. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol, 2005, 12(8): 683–690.
[23] Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcrip-tion. Cell, 2002, 108(4): 475–487.
[24] Gutiérrez JL, Chandy M, Carrozza MJ, Workman JL. Ac-tivation domains drive nucleosome eviction by SWI/SNF.
|