[1] Atsmon D. The interaction of genetic, environmental, and hormonal factors in stem elongation and floral develop-ment of cucumber plants. Ann Bot, 1968, 32(4): 877–882.
[2] Perl-Treves R. In: Ainsworth CC, ed. Sex Determination in Plants. BIOS, Oxford, 1999, 189–286.
[3] Tanurdzic M, Banks JA. Sex-determining mechanisms in land plants. Plant Cell, 2004, 16: s61–s71.
[4] Galun E. Study of the inheritance of sex expression in the cucumber: the interaction of major genes with modifying genetic and non-genetic factors. Genetica, 1961, 32(1): 134–163.
[5] Shifriss O. Sex control in cucumber. J Hered, 1961, 52(1): 5–12
[6] Kubicki B. Investigation of sex determination in cucumber (Cucumis sativus L.). Genet Pol, 1969, 10: 5–143. [7] Malepszy S, Niemirowicz-Szczytt K. Sex determination in cucumber (Cucumis sativus) as a model system for mo-lecular biology. Plant Sci, 1991, 80(4): 39–47.
[8] Robinson RW, Munger HM, Whitaker TW, Bohn GM. Genes of Cucubitaceae. Hort Sci, 1976, 11(2): 554–568. [9] Yin T, Quinn JA. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cu-curbitaceae). Am J Bot, 1995, 82(12): 1537–1546.
[10] Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol, 2001, 42(6): 608–619.
[11] Trebitsh T, Staub JE, O’Neill SD. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhance female sex ex-pression in cucumber. Plant Physiol, 1997, 113(3): 987–995.
[12] Mibus H, Tatlioglu T. Molecular characterization and iso-lation of the F/f gene of femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet, 2004, 109(8): 1669–1676.
[13] Knopf RR, Trebitsh T. The female-specific CS-ACS1G gene of cucumber. A case of gene duplication and recom-bination between the non-sex-specific 1-aminocyclopro- pane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol, 2006, 47(9): 1217–1228.
[14] Li Z, Huang SW, Liu SQ, Pan JS, Zhang ZH, Tao QY, Shi QX, Jia ZQ, Zhang WW, Chen HM, Si LT, Zhu LH, Cai R. Molecular isolation of the M gene suggests that a con-served-residue conversion induces the formation of bi-sexual flowers in cucumber plants. Genetics, 2009, 182(4): 1381–1385.
[15] Boualem A, Troadec C, Kovalski I, Sari M-A, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis en-zyme leads to andromonoecy in two cucumis species. PLoS ONE, 2009, 4(7): e6144.
[16] Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, Mizusawa H, Fujita Y, Takahashi H. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J Exp Bot, 2007, 58(11): 2897–2907.
[17] Li Z, Pan JS, Guan Y, Tao QY, He HL, Si LT, Cai R. De-velopment and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theor Appl Genet, 2008, 117(8): 1253–1260.
[18] Yamasaki S, Fujii N, Takahashi H. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol, 2000, 41(5): 608–616.
[19] Duan QH, Wang DH, Xu ZH, Bai SN. Stamen develop-ment in Arabidopsis is arrested by organ-specific overex-pression of a cucumber ethylene synthesis gene CsACO2. Planta, 2008, 228(4): 537–543. |