[1] Bailey LW. Biological processes in the formation of wood. Science, 1952, 115(2984): 255-259.[2] Sundberg B, Uggla C, Tuominen H. Cambial growth and auxin gradients. In: Savidge R, Barnett J, Napier R, eds. Cell and Molecular Biology of Wood Formation. Oxford: BIOS, 2000: 169-188.[3] Savidge RA, Wareing PF. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395-404.[4] Savidge RA. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochem J, 1983, 15(5): 447-466.[5] Little CHA, Savidge RA. The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul, 1987, 6(1-2): 137-169.[6] Leitch MA, Savidge RA. Evidence for auxin regulation of bordered-pit positioning during tracheid differentiation in Larix laricina. IAWA J, 1995, 16(3): 289-297.[7] Little CHA, Pharis RP. Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL, ed. Plant Stems: Physiology and Functional Morphology. San Diego: Academic Press, 1995: 281-319.[8] Savidge RA. Intrinsic regulation of cambial growth. J Plant Growth Regul, 2000, 20 (1): 52-77.[9] Sundberg B, Tuominen H, Little C. Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L.) Shoots. Plant Physiol, 1994, 106(2): 469-476.[10] Tuominen H, Sitbon F, Jakobsson C, Sandberg G, Olsson O, Sundberg B. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthesis genes. Plant Physiol, 1995, 109(4): 1179-1189.[11] Uggla C, Moritz T, Sandberg G, Sundberg B. Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA, 1996, 93(17): 9282-9286.[12] Tuominen H, Puech L, Fink S, Sundberg B. A radial con-centration gradient of indole-3- acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol, 1997, 115(2): 577-585.[13] Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA, 2003, 100(17): 10096- 100101.[14] Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP. Dissecting the molecular basis of the regulation of wood formation by auxin in Hybrid Aspen. Plant Cell, 2008, 20(4): 843-855.[15] Chang SJ, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11(2): 113-116.[16] Schoof H, Zaccaria P, Gundlach H, Lemcke K, Rudd S, Kolesov G, Arnold R, Mewes HW, Mayer KFX. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acid Res, 2002, 30(1): 91- 93.[17] Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue de-velopment. Curr Biol, 2007, 17(12): 1061-1066.[18] Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fu-kuda H. Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA, 2008, 105(39): 15208-15213.[19] Etchells JP, Turner SR. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 2010, 137(5): 767-774.[20] Ji JB, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ. WOX4 promotes procambial development. Plant Physiol, 2010, 152(3): 1346-1356.[21] Hirakawa Y, Kondo Y, Fukuda H. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 2010, 22(8): 2618- 2629.[22] Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell, 2004, 16(9): 2278-2292.[23] Mele G, Ori N, Sato Y, Hake S. The knotted1-like ho-meobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev, 2003, 17(17): 2088-2093.[24] Du J, Mansfield SD, Groover AT. The Populus homeobox gene ARBORKNOX2 regulates cell dif-ferentiation during secondary growth. Plant J, 2009, 60(6): 1000- 1014.[25] Schneeberger R, Tsiantis M, Freeling M, Langdale JA. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development, 1998, 125 (15): 2857-2865.[26] Waites R, Selvadurai HRN, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lat-eral organs in Antirrhinum. Cell, 1998, 93(5): 779-789.[27] Timmermans MCP, Hudson A, Becraft PW, Nelson T. ROUGH SHEATH2: A Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science, 1999, 284(5411): 151-153.[28] Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science, 1999, 284(5411): 154-156.[29] Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408 (6815): 967-971.[30] Ori N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development, 2000, 127(24): 5523-5532.[31] McHale NA, Koning RE. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves. Plant Cell, 2004, 16(5): 1251-1262.[32] Phelps-Durr TL, Thomas J, Vahab P, Timmermans MCP. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell, 2005, 17(11): 2886-2898.[33] Spector MS, Raff A, DeSilva H, Lee K, Osley MA. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol, 1997, 17(2): 545-552.[34] Kaufman PD, Cohen JL, Osley MA. Hir proteins are re-quired for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol, 1998, 18(8): 4793-4806.[35] Magnaghi P, Roberts C, Lorain S, Lipinski M, Scambler PJ. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Nat Genet, 1998, 20(1): 74-77.[36] Sharp JA, Fouts ET, Krawitz DC, Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol, 2001, 11(7): 463- 473.[37] Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, Brickman JM, Wynshaw- Boris A, Scambler PJ. Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic le-thality. Mol Cell Biol, 2002, 22(7): 2318-2328.[38] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411 (6838): 709 -713.[39] Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Po-ethig RS. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411(6838): 706-709.[40] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13(20): 1768-1774.[41] Caño-Delgado A, Lee JY, Demura T. Regulatory mechanisms for specification and patterning of plant vascular tis-sues. Annu Rev Cell Dev Biol, 2010, 26: 605-637.[42] Zhong RQ, Ye ZH. Regulation of HD-ZIP III genes by MicroRNA 165. Plant Signal Behav, 2007, 2(5): 351-353.[43] Pinon V, Etchells JP, Rossignol P, Collier SA, Arroyo JM, Martienssen RA, Byrne ME. Three PIGGYBACK genes that specifically influence leaf patterning encode ribo-somal proteins. Development, 2008, 135(7): 1315-1324.[44] Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99(17): 1519-11524.[45] Gray WM, Estelle M. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci, 2000, 25(3): 133-138.[46] Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, del Pozo C, Reinhardt D, Estelle M. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J, 2003, 22(13): 3314-3325.[47] Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin re-sponse and early development. Development, 2000, 127(1): 23-32.[48] Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science, 2002, 298(5593): 608-611.[49] Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J, 2000, 21(6): 553- 562.[50] Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol, 2000, 18(8): 621-663.[51] Scarpella E, Meijer AH. Pattern formation in the vascular system of monocot and dicot plant species. New Phytol, 2004, 164(2): 209-242. |