[1] 张玉勤. 炎症与癌症. 国外医学情报, 2002, 1(23): 1–6.
[2] Yu Y, Zhang H, Tian F, Bacon L, Zhang Y, Zhang W, Song J. Quantitative evaluation of DNA methylation patterns for ALVE and TVB genes in a neoplastic disease susceptible and resistant chicken model. PLoS ONE, 2008, 3(3): e1731.
[3] Yu Y, Zhang H, Tian F, Zhang W, Fang H, Song J. An in-tegrated epigenetic and genetic analysis of DNA methyl-transferase genes (DNMTs) in tumor resistant and suscep-tible chicken lines. PLoS ONE, 2008, 3(7): e2672.
[4] Vanselow J, Yang W, Herrmann J, Zerbe1 H, Schuberth HJ, Petzl W, Tomek W, Seyfert HM. DNA-remethylation around a STAT5-binding enhancer in the aS1-casein pro-moter is associated with abrupt shutdown of aS1-casein synthesis during acute mastitis. J Mol Endocrinol, 2006, 37(3): 463–477.
[5] Tycko B. Epigenetic gene silencing in cancer. J Clin In-vest, 2000, 105 (4): 40l–407.
[6] Kornberg RD, Lorch Y. Twenty-five years of the nu-cleosome, fundamental particle of the cukaryote chromo-some. Cell, 1999, 98(3): 285–294.
[7] Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem, 2006, 75: 243–269.
[8] Lo PK, Sukumar S. Epigenomics and breast cancer. Pharmacogenomics, 2008, 9(12): 1879–1902.
[9] Backdahl L, Bushell A, Beck S. Inflammatory signaling as mediator of epigenetic modulation in tissue-specific chronic inflammation. Int J Biochem Cell Biol, 2009, 41(1): 176–184.
[10] 邹雄, 张利宁. 分子免疫学与临床. 山东: 山东科学技术出版社, 2003, 205–206.
[11] Hutchins AS, Artis D, Hendrich BD, Bird AP, Scott P, Reiner SL. Cutting edge: a critical role for gene silencing in preventing excessive type 1 immunity. J Immunol, 2005, 175 (9): 5606–5610.
[12] Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity, 2006, 24 (4): 369–379.
[13] Baguet A, Bix M. Chromatin landscape dynamics of the IL4-IL13 locus during T helper 1 and 2 development. Proc Natl Acad Sci, 2004, 101 (31): 11410–11415.
[14] Saemann MD, Bohmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, Stockl J, Horl WH, Zlabinger GL. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J, 2000, 14 (15): 2380–2382.
[15] Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol, 2006, 6(4): 329–333.
[16] Pappu BP, Borodovsky A, Zheng TS, Yang X, Wu P, Dong X, Weng S, Browning B, Scott ML, Ma L, Su L, Tian Q, Schneider P, Flavell RA, Dong C, Burkly LC. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med, 2005, (5): 1049–1062.
[17] Dominitzki S, Fantini MC, Neufert C, Nikolaev A, Galle PR, Scheller J, Monteleone G, Rose-John S, Neurath MF, Becker C. Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25 T cells. J Immunol, 2007, 179(4): 2041–2045.
[18] Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet, 2001, 27 (1): 68–73.
[19] Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fe-hervari Z, Shimizu J, Takahashi T, Nomura T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev, 2006, 212(1): 8–27.
[20] Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol, 2007, 5(2): e38.
[21] Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, Basu S, Riley JL, Hancock WW, Shen Y, Saouaf SJ, Greene MI. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA, 2007, 104(11): 4571–4576.
[22] Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Por-rett PM, Li B, Turka LA, Olson EN, Greene MI, Wells AD, Hancock WW. Deacetylase inhibition promotes the gen-eration and function of regulatory T cells. Nat Med, 2007, 13 (11): 1299–1307.
[23] Lambe M, Anna J, Daniel A, Sandra E. Mastitis and the risk of breast cancer. Epidemiology, 2009, 20(5): 747–751.
[24] Dimitrios I, Heather AH, Kevin S. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell, 2009, 139(4): 693–706.
[25] 胡毅. 炎症因子与膀胱癌发生的关系[学位论文]. 长春: 吉林大学, 2006.
[26] Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-κB functions as a tumour promoter in inflammation associated cancer. Nature, 2004, 431(7007): 461–466.
[27] Esteller M. Aberrant DNA methylation as a can-cer-inducing mechanism. Annu Rev Pharmacol Toxico, 2005, 45: 629–656.
[28] Knudson AG. Chasing the cancer demon. Annu Rev Genet, 2000, 34: 1–19.
[29] Jonasson JG, Eyfjord JE. Epigenetic silencing and delec-tion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Rev, 2006, 8(4): R38.
[30] Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases1, 3A, and3B in spo-radic breast carcinomas. Clin Cancer Res, 2003, 9(12): 4415–4422.
[31] Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, Kreipe H. Epigenetic inactiva-tion of microRNA gene hsa-mir-9-1 in human breast can-cer. J Pathol, 2008, 214(1): 17–24.
[32] Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene, 2002, 21(35): 5462–5482.
[33] 何阳花. CD4与STAT5b基因单核苷酸多态性与SCC及产奶性状的关联分析[学位论文]. 北京: 中国农业大学, 2009.
[34] Heringstad B, Gianola D, Chang YM, Odegard J, Kle-metsdal G. Genetic associations between clinical mastitis and somatic cell score in early first-lactation cows. J Dairy Sci, 2006, 89(6): 2236–2244.
[35] 何阳花, 俞英, 张沅. 拷贝数变异与疾病的关系及其在动物抗病育种的应用. 遗传, 2008, 30(11): 1385–1391.
[36] 党永辉, 李生斌, 孙中生. 重性抑郁障碍发病的表观遗传调控假说. 遗传, 2008, 30(6): 665–670.
[37] 张永彪, 褚嘉祐. 表观遗传学与人类疾病的研究进展. 遗传, 2005, 27(3): 466–472. |