遗传 ›› 2023, Vol. 45 ›› Issue (2): 99-114.doi: 10.16288/j.yczz.22-310
收稿日期:
2022-09-26
修回日期:
2022-11-09
出版日期:
2023-02-20
发布日期:
2022-11-23
通讯作者:
刘畅,博士,教授,研究方向:生物钟与能量代谢。E-mail: changliu@cpu.edu.cn作者简介:
冒姝羽,在读硕士研究生,专业方向:细胞生物学。E-mail: 3220030438@stu.cpu.edu.cn
基金资助:
Mao Shuyu1(), Zhao Changrui1, Liu Chang1,2()
Received:
2022-09-26
Revised:
2022-11-09
Published:
2023-02-20
Online:
2022-11-23
Supported by:
摘要:
哺乳动物的各项生理活动以24 h为周期呈现节律性变化。稳定的昼夜节律由生物钟系统所精细调控,而昼夜节律的紊乱会导致代谢性疾病的发生。核受体超家族成员REV-ERBα是哺乳动物生物钟的重要组成部分,参与代谢、炎症、免疫和昼夜节律等多种生理过程的调节,是代谢性疾病、炎症性疾病和癌症的潜在治疗靶点。近年来发现了一系列新的REV-ERBα配体,其中大部分在疾病治疗方面具有潜在的应用价值。本文主要介绍核受体REV-ERBα在能量代谢以及炎症反应中的调节作用,以期为代谢综合征及相关疾病的治疗提供新的策略和参考。
本文勘误:见 遗传, 2024, Vol. 46 (12): 1076.
冒姝羽, 赵昌睿, 刘畅. 核受体REV-ERBα整合生物钟与能量代谢[J]. 遗传, 2023, 45(2): 99-114.
Mao Shuyu, Zhao Changrui, Liu Chang. The nuclear receptor REV-ERBα integrates circadian clock and energy metabolism[J]. Hereditas(Beijing), 2023, 45(2): 99-114.
表1
REV-ERBα在机体各组织中的功能"
组织 | 功能 | 疾病类型 | 参考文献 |
---|---|---|---|
心脏 | 抑制CDKN1a/p21表达; 增加心肌肌钙蛋白T释放 | 围手术期心肌损伤 | [ |
抑制NLRP3炎性小体激活; 减少IL-1β、IL-18释放; 减少巨噬细胞浸润 | 缺血再灌注损伤、心力衰竭 | [ | |
维持脂肪酸氧化代谢; 维持心脏收缩功能 | 扩张型心肌病、心力衰竭 | [ | |
下调铁死亡/铁自噬; 增强内源性心脏保护机制 | 缺血再灌注损伤 | [ | |
肺 | 减少CXCL1、CXCL2、CXCL5、G-CSF分泌; 降低IL-6表达 | 肺部炎症 | [ |
抑制肌成纤维细胞激活; 减少胶原分泌 | 肺纤维化 | [ | |
肝脏 | 抑制糖异生 | 糖尿病、血糖紊乱 | [ |
下调ApoC3、ApoA4水平; 减少肝脏脂肪生成 | 高脂血症 | [ | |
抑制胆汁酸合成 | 高胆固醇血症 | [ | |
抑制同型半胱氨酸分解代谢; | 高同型半胱氨酸血症 | [ | |
抑制NLRP3炎性小体; 减少IL-1β、IL-18释放 | 重型肝炎 | [ | |
胰腺 | 高糖情况下促进胰岛素分泌; 低糖情况下促进胰高血糖素分泌; 维持血糖稳态; 提高β细胞功能与存活 | 血糖紊乱 | [ |
结肠 | 抑制NF-κB信号传导; 抑制NLRP3炎性小体; 减少IL-1β表达 | 溃疡性结肠炎 | [ |
增强肠道屏障功能; 减少膳食脂肪吸收 | 肥胖、NASH | [ | |
骨 | 抑制破骨细胞生成; 减少破骨细胞骨吸收; 减少伪足小体带形成; 抑制骨生成 | 骨质疏松症 | [ |
减轻炎症反应; 抑制M1型巨噬细胞极化; 减少炎性细胞浸润; 抑制NF-κB信号传导; 抑制破骨细胞生成; 减少活性氧的生成 | 类风湿性关节炎 | [ | |
大脑海马区 | 抑制NLRP3炎性小体激活; 减少IL-1β、IL-18、IL-6及TNF-α表达; 抑制星状细胞增多; 抑制小胶质细胞增生 | 颞叶癫痫 | [ |
大脑黑质纹状体 | 抑制NF-κB信号传导; 抑制NLRP3炎性小体; 减少IL-1β、IL-18、IL-6及TNF-α表达; 促进M2型小胶质细胞极化 | 帕金森病 | [ |
大脑 | 小胶质细胞吞噬作用; 淀粉样蛋白β的清除 | 阿尔茨海默病 | [ |
突触功能增加; 突触数量增加; 认知功能改善 | 阿尔茨海默病 | [ | |
肌肉 | 提高骨骼肌氧化能力; 增加线粒体生物发生; 下调自噬; 提高骨骼肌运动功能; 增加骨骼肌含量 | 杜氏肌营养不良症 | [ |
图1
REV-ERBα调控靶基因表达的作用模式 A:REV-ERBα通常作为单体结合在目标基因启动子上的RORE元件发挥调控作用。B:两分子的REV-ERBα形成同源二聚体与RevDR2元件结合,招募共抑制因子(即NCOR1和HDAC3)来调节基因的转录。C:某些情况下,两分子的REV-ERBα可以分别结合两个相邻的RORE元件招募共抑制因子(即NCOR1和HDAC3)来调节基因的转录。D:REV-ERBα通过与某些转录因子相互作用间接调节基因转录。使用Servier Medical Art的素材进行修改绘制,Servier Medical Art使用CC BY-SA 3.0协议(https://creativecommons.org/licenses/by/3.0/)。"
图2
REV-ERBα在机体能量代谢中发挥重要作用 REV-ERBα参与维持机体能量代谢稳态。在糖代谢方面,REV-ERBα直接抑制糖异生,调节胰岛素、胰高血糖素水平,维持机体葡萄糖水平的节律性振荡。在脂代谢方面,REV-ERBα调节肝脏脂质合成、脂质运输、胆汁酸代谢,脂肪细胞分化和脂肪组织的扩张,以及骨骼肌和心脏脂肪酸氧化能力。此外,REV-ERBα在氨基酸代谢和骨代谢方面也发挥着不可或缺的作用。使用Servier Medical Art的素材进行修改绘制,Servier Medical Art使用CC BY-SA 3.0协议(https://creativecommons.org/licenses/by/3.0/)。"
图3
REV-ERBα调控巨噬细胞和Th17细胞的炎症基因的表达 A:REV-ERBα抑制巨噬细胞中多种炎症基因(即p65、Nlrp3、IL-1β、TLR4、IL-6、Ccl2、Mmp9和Cx3cr1)的表达。B:REV-ERBα在Th17细胞中的调节作用可能与其表达水平有关。当低水平表达时,REV-ERBα通过抑制NFIL3,解除NFIL3对RORγt抑制作用,进而激活RORγt促进Th17细胞的发育;当高水平表达时,REV-ERBα通过与RORγt竞争结合IL-17a启动子上的RORE元件而负向调节Th17细胞的发育。使用Servier Medical Art的素材进行修改绘制,Servier Medical Art使用CC BY-SA 3.0协议(https://creativecommons.org/licenses/by/3.0/)。"
图4
REV-ERBα的生理性配体及代表性的合成配体 血红素是REV-ERBα的内源性配体,但高浓度的血红素具有细胞毒性且对REV-ERBα选择性较差,应用范围有限。随后,研究人员采用FRET技术筛选出第一个合成激动剂GSK4112,通常被用于体外实验。SR9009和SR9011是基于GSK4112的化学结构设计的REV-ERBs激动剂,表现出更好的药代动力学特性,已被广泛应用于体内外研究。SR8278是第一个合成的REV-ERBα拮抗剂,也是迄今为止可用于体内研究的最有效的REV-ERB拮抗剂。使用Servier Medical Art的素材进行修改绘制,Servier Medical Art使用CC BY-SA 3.0协议(https://creativecommons.org/licenses/by/3.0/)。"
[1] |
Dumas B, Harding HP, Choi HS, Lehmann KA, Chung M, Lazar MA, Moore DD. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. Mol Endocrinol, 1994, 8(8): 996-1005.
pmid: 7997240 |
[2] |
Miyajima N, Horiuchi R, Shibuya Y, Fukushige S, Matsubara K, Toyoshima K, Yamamoto T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell, 1989, 57(1): 31-39.
pmid: 2539258 |
[3] |
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 2012, 485(7396): 123-127.
doi: 10.1038/nature11048 |
[4] |
Zhao X, Hirota T, Han XM, Cho H, Chong LW, Lamia K, Liu SH, Atkins AR, Banayo E, Liddle C, Yu RT, Yates JR, 3rd, Kay SA, Downes M, Evans RM. Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell, 2016, 165(7): 1644-1657.
doi: S0092-8674(16)30560-8 pmid: 27238018 |
[5] |
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science, 2011, 331(6022): 1315-1319.
doi: 10.1126/science.1198125 pmid: 21393543 |
[6] |
Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, Ninni S, Klein C, Ortmans S, Seunes C, Potelle C, Berthier A, Gheeraert C, Piveteau C, Deprez R, Eeckhoute J, Duez H, Lacroix D, Deprez B, Jegou B, Koussa M, Edme JL, Lefebvre P, Staels B. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet, 2018, 391(10115): 59-69.
doi: S0140-6736(17)32132-3 pmid: 29107324 |
[7] |
Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol, 2019, 2: 353.
doi: 10.1038/s42003-019-0595-z pmid: 31925167 |
[8] |
Song SY, Tien CL, Cui H, Basil P, Zhu NX, Gong YY, Li WB, Li H, Fan QY, Min Choi J, Luo WJ, Xue YF, Cao R, Zhou WJ, Ortiz AR, Stork B, Mundra V, Putluri N, York B, Chu MP, Chang J, Yun Jung S, Xie L, Song JP, Zhang LL, Sun Z. Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation, 2022, 145(6): 448-464.
doi: 10.1161/CIRCULATIONAHA.121.056076 pmid: 35034472 |
[9] |
Huang Q, Tian LQ, Zhao XS, Lei SQ, Zhao B, Qiu Z, Xia ZY. Rev-erbs agonist SR9009 alleviates ischemia- reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: down- regulating ferritinophagy/ferroptosis signaling. Biomedicine Pharmacother, 2022, 154: 113595.
doi: 10.1016/j.biopha.2022.113595 |
[10] |
Pariollaud M, Gibbs JE, Hopwood TW, Brown S, Begley N, Vonslow R, Poolman T, Guo BQ, Saer B, Jones DH, Tellam JP, Bresciani S, Tomkinson NC, Wojno-Picon J, Cooper AW, Daniels DA, Trump RP, Grant D, Zuercher W, Willson TM, MacDonald AS, Bolognese B, Podolin PL, Sanchez Y, Loudon AS, Ray DW. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J Clin Invest, 2018, 128(6): 2281-2296.
doi: 10.1172/JCI93910 pmid: 29533925 |
[11] | Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA, Bagnall J, Kitchen GB, Lodyga M, Begley N, Venkateswaran RV, Shah R, Mercer PF, Durrington HJ, Henderson NC, Piper-Hanley K, Fisher AJ, Chambers RC, Bechtold DA, Gibbs JE, Loudon AS, Rutter MK, Hinz B, Ray DW, Blaikley JF.The circadian clock protein REVERBα inhibits pulmonary fibrosis development. Proc Natl Acad Sci USA, 2020, 117(2): 1139-1147. |
[12] |
Yuan X, Dong D, Li ZJ, Wu BJ. Rev-erbalpha activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice. Pharmacol Res, 2019, 141: 310-318.
doi: S1043-6618(18)30732-1 pmid: 30639375 |
[13] |
RaspéE, Duez H, Mansén A, Fontaine C, Fiévet C, Fruchart JC, Vennström B, Staels B. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J Lipid Res, 2002, 43(12): 2172-2179.
doi: 10.1194/jlr.m200386-jlr200 pmid: 12454280 |
[14] |
Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang FF, Jager J, Lazar MA. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev, 2012, 26(7): 657-667.
doi: 10.1101/gad.186858.112 |
[15] |
Anzulovich A, Mir A, Brewer M, Ferreyra G, Vinson C, Baler R. Elovl3: a model gene to dissect homeostatic links between the circadian clock and nutritional status. J Lipid Res, 2006, 47(12): 2690-2700.
doi: 10.1194/jlr.M600230-JLR200 pmid: 17003504 |
[16] |
Sitaula S, Zhang JS, Ruiz F, Burris TP. Rev-erb regulation of cholesterologenesis. Biochem Pharmacol, 2017, 131: 68-77.
doi: S0006-2952(17)30083-7 pmid: 28213272 |
[17] |
Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Bauge E, Havinga R, Bloks VW, Wolters H, van der Sluijs FH, Vennström B, Kuipers F, Staels B. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology, 2008, 135(2): 689-698.
doi: 10.1053/j.gastro.2008.05.035 |
[18] |
Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, Moschetta A, Schibler U. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol, 2009, 7(9): e1000181.
doi: 10.1371/journal.pbio.1000181 |
[19] |
Zhang TP, Zhao MJ, Lu DY, Wang S, Yu FJ, Guo LX, Wen SJ, Wu BJ.REV-ERBα regulates CYP7A1 through repression of liver receptor homolog-1. Drug Metab Dispos, 2018, 46(3): 248-258.
doi: 10.1124/dmd.117.078105 |
[20] |
Zhang TP, Chen M, Guo LX, Yu FJ, Zhou C, Xu HM, Wu BJ. Reverse erythroblastosis virus alpha antagonism promotes homocysteine catabolism and ammonia clearance. Hepatology, 2019, 70(5): 1770-1784.
doi: 10.1002/hep.30675 |
[21] |
Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Haas JT, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguiez A, Lancel S, Sebti Y, Burris TP, Staels B, Duez HM. Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice. Gastroenterology, 2018, 154(5): 1449-1464.e20.
doi: S0016-5085(17)36725-2 pmid: 29277561 |
[22] |
Brown MR, Laouteouet D, Delobel M, Villard O, Broca C, Bertrand G, Wojtusciszyn A, Dalle S, Ravier MA, Matveyenko AV, Costes S. The nuclear receptor REV-ERBα is implicated in the alteration of β-cell autophagy and survival under diabetogenic conditions. Cell Death Dis, 2022, 13(4): 353.
doi: 10.1038/s41419-022-04767-z pmid: 35428762 |
[23] |
Vieira E, Marroqui L, Batista TM, Caballero-Garrido E, Carneiro EM, Boschero AC, Nadal A, Quesada I. The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet. Endocrinology, 2012, 153(2): 592-601.
doi: 10.1210/en.2011-1595 pmid: 22166979 |
[24] |
Vieira E, Merino B, Quesada I. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas. Diabetes Obes Metab, 2015, 17(Suppl 1): 106-114.
doi: 10.1111/dom.12522 |
[25] |
Vieira E, Marroqui L, Figueroa ALC, Merino B, Fernandez-Ruiz R, Nadal A, Burris TP, Gomis R, Quesada I. Involvement of the clock gene Rev-erbα in the regulation of glucagon secretion in pancreatic α-cells. PLoS One, 2013, 8(7): e69939.
doi: 10.1371/journal.pone.0069939 |
[26] |
Wang S, Lin YK, Yuan X, Li F, Guo LX, Wu BJ. REV-ERBα integrates colon clock with experimental colitis through regulation of NF-kappaB/NLRP3 axis. Nat Commun, 2018, 9(1): 4246.
doi: 10.1038/s41467-018-06568-5 |
[27] |
Ni YH, Zhao YF, Ma LY, Wang Z, Ni LY, Hu LT, Fu ZW. Pharmacological activation of REV-ERBα improves nonalcoholic steatohepatitis by regulating intestinal permeability. Metabolism, 2021, 114: 154409.
doi: 10.1016/j.metabol.2020.154409 |
[28] |
Yu FJ, Wang ZG, Zhang TP, Chen X, Xu HM, Wang F, Guo LX, Chen M, Liu KS, Wu BJ. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nature Commun, 2021, 12(1): 5323.
doi: 10.1038/s41467-021-25674-5 |
[29] |
Song C, Tan P, Zhang Z, Wu W, Dong YH, Zhao LM, Liu HY, Guan HF, Li F. REV-ERB agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation. FASEB J, 2018, 32(6): 3215-3228.
doi: 10.1096/fj.201600825RRR pmid: 29401617 |
[30] |
He Y, Lin FW, Chen YQ, Tan Z, Bai D, Zhao Q. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev, 2015, 24(10): 1194-1204.
doi: 10.1089/scd.2014.0437 pmid: 25539035 |
[31] |
Liu H, Zhu YL, Gao YT, Qi DH, Zhao LM, Zhao LB, Liu CY, Tao TH, Zhou CK, Sun XY, Guo FJ, Xiao J. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis, 2020, 11(2): 129.
doi: 10.1038/s41419-020-2314-6 pmid: 32071294 |
[32] |
Yue J, He JJ, Wei YJ, Shen KF, Wu KF, Yang XL, Liu SY, Zhang CQ, Yang H. Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model. J Neuroinflammation, 2020, 17(1): 43.
doi: 10.1186/s12974-020-1718-7 |
[33] |
Kou L, Chi XS, Sun YD, Han C, Wan F, Hu JJ, Yin SJ, Wu JW, Li YN, Zhou QL, Zou WK, Xiong N, Huang JS, Xia Y, Wang T. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. J Neuroinflammation, 2022, 19(1): 133.
doi: 10.1186/s12974-022-02494-y |
[34] | Lee J, Kim DE, Griffin P, Sheehan PW, Kim DH, Musiek ES, Yoon SY. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell, 2020, 19(2): e13078. |
[35] |
Roby DA, Ruiz F, Kermath BA, Voorhees JR, Niehoff M, Zhang JS, Morley JE, Musiek ES, Farr SA, Burris TP. Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease. PloS One, 2019, 14(4): e0215004.
doi: 10.1371/journal.pone.0215004 |
[36] |
Boulinguiez A, Duhem C, Mayeuf-Louchart A, Pourcet B, Sebti Y, Kondratska K, Montel V, Delhaye S, Thorel Q, Beauchamp J, Hebras A, Gimenez M, Couvelaere M, Zecchin M, Ferri L, Prevarskaya N, Forand A, Gentil C, Ohana J, Piétri-Rouxel F, Bastide B, Staels B, Duez H, Lancel S. NR1D1 controls skeletal muscle calcium homeostasis through myoregulin repression. JCI Insight, 2022, 7(17): e153584.
doi: 10.1172/jci.insight.153584 |
[37] |
Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y, Kamenecka TM, Schaart G, Lefebvre P, Nevière R, Burris TP, Schrauwen P, Staels B, Duez H. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med, 2013, 19(8): 1039-1046.
doi: 10.1038/nm.3213 pmid: 23852339 |
[38] |
Rovina RL, da Rocha AL, Marafon BB, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. One bout of aerobic exercise can enhance the expression of in oxidative skeletal muscle samples. Front Physiol, 2021, 12: 626096.
doi: 10.3389/fphys.2021.626096 |
[39] |
Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science, 2016, 354(6315): 994-999.
pmid: 27885004 |
[40] | Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 2020, 21(2): 67-84. |
[41] | Zeng YZ, Zhang T, Xu Y. Rapid assessment of circadian behavior in mice. Hereditas (Beijing), 2022, 44(4): 346-357. |
曾义准, 张陶, 徐璎. 分析小鼠昼夜节律变化的行为学方法. 遗传, 2022, 44(4): 346-357. | |
[42] |
Stenvers DJ, Scheer FAJL, Schrauwen P la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol, 2019, 15(2): 75-89.
doi: 10.1038/s41574-018-0122-1 pmid: 30531917 |
[43] | Crnko S, Schutte H, Doevendans PA, Sluijter JPG, van Laake LW. Minimally invasive ways of determining circadian rhythms in humans. Physiology (Bethesda), 2021, 36(1): 7-20. |
[44] |
Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis. Science, 2021, 371(6530): eabd0951.
doi: 10.1126/science.abd0951 |
[45] | Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA.Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science, 2007, 318(5857): 1786-1789. |
[46] |
Yin L, Lazar MA. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol, 2005, 19(6): 1452-1459.
doi: 10.1210/me.2005-0057 |
[47] |
Zhang YX, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, Steger DJ, Lazar MA. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science, 2015, 348(6242): 1488-1492.
doi: 10.1126/science.aab3021 pmid: 26044300 |
[48] | Duez H, Staels B. Rev-erbα gives a time cue to metabolism. FEBS Lett, 2008, 582(1): 19-25. |
[49] |
Millius A, Ueda H. Rhythms: the dark side meets the light. Science, 2018, 359(6381): 1210-1211.
doi: 10.1126/science.aat3211 pmid: 29590060 |
[50] |
Delezie J, Dumont S, Dardente H, Oudart H, Gréchez- Cassiau A, Klosen P, Teboul M, Delaunay F, Pévet P, Challet E. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J, 2012, 26(8): 3321-3335.
doi: 10.1096/fj.12-208751 pmid: 22562834 |
[51] |
Solt LA, Wang YJ, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485(7396): 62-68.
doi: 10.1038/nature11030 |
[52] |
Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia. Sci Adv, 2021, 7(26): eabf3885.
doi: 10.1126/sciadv.abf3885 |
[53] |
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC ran up the clock: the complex interplay between MYC and the molecular circadian clock in cancer. Int J Mol Sci, 2021, 22(14): 7761.
doi: 10.3390/ijms22147761 |
[54] |
Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R, Cox J, Ajioka R, Jones D, Lee SH, King D, Huang JY, McClain DA. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes, 2015, 64(4): 1108-1119.
doi: 10.2337/db14-0646 pmid: 25315005 |
[55] |
Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci, 2018, 19(8): 453-469.
doi: 10.1038/s41583-018-0026-z pmid: 29934559 |
[56] |
Ding GL, Li X, Hou XG, Zhou WJ, Gong YY, Liu FQ, He YL, Song J, Wang J, Basil P, Li WB, Qian SC, Saha P, Wang JB, Cui C, Yang TT, Zou KX, Han YH, Amos CI, Xu Y, Chen L, Sun Z. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature, 2021, 592(7856): 763-767.
doi: 10.1038/s41586-021-03358-w |
[57] |
Xu YT, Guo JB, Zhang L, Miao GL, Lai PP, Zhang WX, Liu LL, Hou XL, Wang YH, Huang W, Liu G, Gao MM, Xian XD. Targeting apoC 3 paradoxically aggravates atherosclerosis in hamsters with severe refractory hypercholesterolemia. Front Cardiovasc Med, 2022, 9: 840358.
doi: 10.3389/fcvm.2022.840358 |
[58] |
Hunter AL, Pelekanou CE, Adamson A, Downton P, Barron NJ, Cornfield T, Poolman TM, Humphreys N, Cunningham PS, Hodson L, Loudon ASI, Iqbal M, Bechtold DA, Ray DW. Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proc Natl Acad Sci USA, 2020, 117(41): 25869-25879.
doi: 10.1073/pnas.2005330117 pmid: 32989157 |
[59] |
Laitinen S, Fontaine C, Fruchart JC, Staels B. The role of the orphan nuclear receptor Rev-Erbα in adipocyte differentiation and function. Biochimie, 2005, 87(1): 21-25.
pmid: 15733732 |
[60] |
Hunter AL, Pelekanou CE, Barron NJ, Northeast RC, Grudzien M, Adamson AD, Downton P, Cornfield T, Cunningham PS, Billaud JN, Hodson L, Loudon AS, Unwin RD, Iqbal M, Ray DW, Bechtold DA. Adipocyte NR1D1 dictates adipose tissue expansion during obesity. eLife, 2021, 10: e63324.
doi: 10.7554/eLife.63324 |
[61] |
Pan XY, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology, 2022, 76(1): 78-93.
doi: 10.1002/hep.32196 |
[62] |
Bond MR, Hanover JA. O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr, 2013, 33: 205-229.
doi: 10.1146/annurev-nutr-071812-161240 pmid: 23642195 |
[63] | Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J, Hovasse A, Schaeffer-Reiss C, Cianférani S, Rolando C, Bray F, Duez H, Eeckhoute J, Lefebvre T, Staels B, Lefebvre P. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proc Natl Acad Sci USA, 2018, 115(47): E11033-E11042. |
[64] | Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics, 2020, 10(9): 4168-4182. |
[65] |
Samad F, Ruf W. Inflammation, obesity, and thrombosis. Blood, 2013, 122(20): 3415-3422.
doi: 10.1182/blood-2013-05-427708 pmid: 24092932 |
[66] |
Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, Cedeno MR, Nadarajah CJ, Ezerskiy LA, Colonna M, Zhang JS, Bauer AQ, Burris TP, Musiek ES. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc Natl Acad Sci USA, 2019, 116(11): 5102-5107.
doi: 10.1073/pnas.1812405116 pmid: 30792350 |
[67] |
Zhao WJ, Cui LY, Huang XX, Wang SC, Li DJ, Li LP, Sun Y, Du MR. Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLR4-regulated NF-kappaB activation. Acta Biochim Biophys Sin (Shanghai), 2019, 51(9): 908-914.
doi: 10.1093/abbs/gmz078 |
[68] |
Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon ASI. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA, 2012, 109(2): 582-587.
doi: 10.1073/pnas.1106750109 pmid: 22184247 |
[69] |
Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T. A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol, 2014, 192(1): 407-417.
doi: 10.4049/jimmunol.1301982 pmid: 24307731 |
[70] |
Lam MTY, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 2013, 498(7455): 511-515.
doi: 10.1038/nature12209 |
[71] | Wu ZN, Liao F, Luo GQ, Qian YX, He XJ, Xu WY, Ding S, Pu J. NR1D1 deletion induces rupture-prone vulnerable plaques by regulating macrophage pyroptosis via the NF-kappaB/NLRP3 inflammasome pathway. Oxid Med Cell Longev, 2021: 5217572. |
[72] |
Sitaula S, Billon C, Kamenecka TM, Solt LA, Burris TP. Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochem Biophys Res Commun, 2015, 460(3): 566-571.
doi: 10.1016/j.bbrc.2015.03.070 |
[73] |
Wang QL, Robinette ML, Billon C, Collins PL, Bando JK, Fachi JL, Sécca C, Porter SI, Saini A, Gilfillan S, Solt LA, Musiek ES, Oltz EM, Burris TP, Colonna M. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol, 2019, 4(40): eaay7501.
doi: 10.1126/sciimmunol.aay7501 |
[74] |
Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang JS, Pelletier OB, He YJ, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα regulates TH17 cell development and autoimmunity. Cell Rep, 2018, 25(13): 3733-3749.e8.
doi: 10.1016/j.celrep.2018.11.101 |
[75] |
Yu XF, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV. TH17 cell differentiation is regulated by the circadian clock. Science, 2013, 342(6159): 727-730.
doi: 10.1126/science.1243884 pmid: 24202171 |
[76] |
Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Balbuena Aguirre ME, Patel B, Ysrraelit MC, Zhu C, Kuchroo VK, Rabinovich GA, Quintana FJ, Correale J. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell, 2015, 162(6): 1338-1352.
doi: 10.1016/j.cell.2015.08.025 pmid: 26359987 |
[77] |
Chang C, Loo CS, Zhao X, Solt LA, Liang YQ, Bapat SP, Cho H, Kamenecka TM, Leblanc M, Atkins AR, Yu RT, Downes M, Burris TP, Evans RM, Zheng Y. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci USA, 2019, 116(37): 18528-18536.
doi: 10.1073/pnas.1907563116 pmid: 31455731 |
[78] |
Li T, Eheim AL, Klein S, Uschner FE, Smith AC, Brandon-Warner E, Ghosh S, Bonkovsky HL, Trebicka J, Schrum LW. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology, 2014, 59(6): 2383-2396.
doi: 10.1002/hep.27049 pmid: 24497272 |
[79] | Grant D, Yin L, Collins JL, Parks DJ, Orband-Miller LA, Wisely GB, Joshi S, Lazar MA, Willson TM, Zuercher WJ.GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbalpha. ACS Chem Biol, 2010, 5(10): 925-932. |
[80] |
Morioka N, Kodama K, Tomori M, Yoshikawa K, Saeki M, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Stimulation of nuclear receptor REV-ERBs suppresses production of pronociceptive molecules in cultured spinal astrocytes and ameliorates mechanical hypersensitivity of inflammatory and neuropathic pain of mice. Brain Behav Immun, 2019, 78: 116-130.
doi: S0889-1591(18)30412-4 pmid: 30682503 |
[81] |
Wang QX, Sundar IK, Lucas JH, Muthumalage T, Rahman I. Molecular clock REV-ERBα regulates cigarette smoke-induced pulmonary inflammation and epithelial- mesenchymal transition. JCI Insight, 2021, 6(12): e145200.
doi: 10.1172/jci.insight.145200 |
[82] |
Tao LL, Yu HY, Liang R, Jia R, Wang JJ, Jiang K, Wang ZG. Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis, 2019, 8(10): 57.
doi: 10.1038/s41389-019-0168-5 pmid: 31591390 |
[83] |
Wolff SEC, Wang XL, Jiao H, Sun J, Kalsbeek A, Yi CX, Gao YQ. The effect of Rev-erbα agonist SR9011 on the immune response and cell metabolism of microglia. Front Immunol, 2020, 11: 550145.
doi: 10.3389/fimmu.2020.550145 |
[84] |
Tiwari D, Ahuja N, Kumar S, Kalra R, Nanduri R, Gupta S, Khare AK, Bhagyaraj E, Arora R, Gupta P. Nuclear receptor Nr1d1 alleviates asthma by abating GATA3 gene expression and Th2 cell differentiation. Cell Mol Life Sci, 2022, 79(6): 308.
doi: 10.1007/s00018-022-04323-0 pmid: 35596832 |
[85] |
Sulli G, Rommel A, Wang XJ, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM, Panda S. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature, 2018, 553(7688): 351-355.
doi: 10.1038/nature25170 |
[86] | Gao L-B, Wang Y-H, Liu Z-H, Sun Y, Cai P, Jing Q. Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence. Aging Cell, 2021, 20(10): e13483. |
[87] | Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai YL, Zhao ZM, Yoo S-H, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J, 2022, 36(9): e22482. |
[88] |
Shen WT, Zhang W, Ye WL, Wang HH, Zhang QX, Shen J, Hong QS, Li X, Wen G, Wei T, Zhang J. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics, 2020, 10(10): 4466-4480.
doi: 10.7150/thno.42478 pmid: 32292508 |
[89] | Sun LY, Lyu YY, Zhang HY, Shen Z, Lin GQ, Geng N, Wang YL, Huang L, Feng ZH, Guo X, Lin N, Ding S, Yuan AC, Zhang L, Qian K, Pu J.Nuclear receptor NR1D1 regulates abdominal aortic aneurysm development by targeting the mitochondrial tricarboxylic acid cycle enzyme aconitase-2. Circulation, 2022: 101161CIRCULATIONAHA121057623. |
[90] |
Kojetin D, Wang YJ, Kamenecka TM, Burris TP. Identification of SR8278, a synthetic antagonist of the nuclear heme receptor REV-ERB. ACS Chem Biol, 2011, 6(2): 131-134.
doi: 10.1021/cb1002575 pmid: 21043485 |
[91] |
Dong D, Sun H, Wu ZF, Wu BJ, Xue YX, Li ZJ. A validated ultra-performance liquid chromatography- tandem mass spectrometry method to identify the pharmacokinetics of SR8278 in normal and streptozotocin-induced diabetic rats. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1020: 142-147.
doi: 10.1016/j.jchromb.2016.03.033 pmid: 27038650 |
[92] |
Kim J, Park I, Jang S, Choi M, Kim D, Sun W, Choe Y, Choi JW, Moon C, Park SH, Choe HK, Kim K. Pharmacological rescue with SR8278, a circadian nuclear receptor REV-ERBα antagonist as a therapy for mood disorders in Parkinson's disease. Neurotherapeutics, 2022, 19(2): 592-607.
doi: 10.1007/s13311-022-01215-w pmid: 35322351 |
[93] |
Zhang TP, Yu FJ, Xu HM, Chen M, Chen X, Guo LX, Zhou C, Xu YT, Wang F, Yu JD, Wu BJ. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models. Nature Commun, 2021, 12(1): 1216.
doi: 10.1038/s41467-021-21477-w |
[94] |
Shi JF, Tong RY, Zhou M, Gao Y, Zhao YC, Chen YF, Liu WH, Li GX, Lu D, Meng GF, Hu LH, Yuan AC, Lu XY, Pu J. Circadian nuclear receptor Rev-erbα is expressed by platelets and potentiates platelet activation and thrombus formation. Eur Heart J, 2022, 43(24): 2317-2334.
doi: 10.1093/eurheartj/ehac109 pmid: 35267019 |
[95] |
Wang S, Lin YK, Zhou ZY, Gao L, Yang ZM, Li F, Wu BJ. Circadian clock gene Bmal1 regulates bilirubin detoxification: a potential mechanism of feedback control of hyperbilirubinemia. Theranostics, 2019, 9(18): 5122-5133.
doi: 10.7150/thno.35773 pmid: 31410205 |
[96] |
Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov, 2014, 13(3): 197-216.
doi: 10.1038/nrd4100 pmid: 24577401 |
[97] |
Trump RP, Bresciani S, Cooper AWJ, Tellam JP, Wojno J, Blaikley J, Orband-Miller LA, Kashatus JA, Boudjelal M, Dawson HC, Loudon A, Ray D, Grant D, Farrow SN, Willson TM, Tomkinson NCO. Optimized chemical probes for REV-ERBα. J Med Chem, 2013, 56(11): 4729-4737.
doi: 10.1021/jm400458q pmid: 23656296 |
[98] |
Zhou ZY, Lin YK, Gao L, Yang ZM, Wang S, Wu BJ. Circadian pharmacological effects of berberine on chronic colitis in mice: Role of the clock component Rev-erbα. Biochem Pharmacol, 2020, 172: 113773.
doi: 10.1016/j.bcp.2019.113773 |
[99] |
Chen M, Zhou C, Xu HM, Zhang TP, Wu BJ. Chronopharmacological targeting of Rev-erbα by puerarin alleviates hyperhomocysteinemia in mice. Biomed Pharmacother, 2020, 125: 109936.
doi: 10.1016/j.biopha.2020.109936 pmid: 32006903 |
[100] |
Artyomov MN, Van den Bossche J. Immunometabolism in the single-cell era. Cell Metab, 2020, 32(5): 710-725.
doi: 10.1016/j.cmet.2020.09.013 pmid: 33027638 |
[1] | 沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
[2] | 孙明洁, 卢佳丽, 逄越. 七鳃鳗——铁代谢研究的极佳模型[J]. 遗传, 2024, 46(5): 387-397. |
[3] | 温馨, 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君. 基于转录组测序对GULP1下游靶基因筛选及分析[J]. 遗传, 2024, 46(10): 860-870. |
[4] | 万羽鑫, 朱欣雨, 赵宇, 孙娜, 江天彤妃, 徐娟. 计算解析异常代谢对乳腺癌微环境重塑的调控机制[J]. 遗传, 2024, 46(10): 871-885. |
[5] | 全舒婷, 焦伟伟, 徐放, 孙琳, 綦辉, 申阿东. 鸟苷酸结合蛋白家族在感染性疾病中调控炎症小体活化的研究进展[J]. 遗传, 2023, 45(11): 1007-1017. |
[6] | 戴鸿宇, 季东, 谈程, 孙杰, 姚昊. 致病性Th17细胞在神经炎症中的作用及调控机制的研究进展[J]. 遗传, 2022, 44(4): 289-299. |
[7] | 王孟晓, 何淑君. 神经胶质细胞调控黑腹果蝇生理行为研究进展[J]. 遗传, 2022, 44(4): 300-312. |
[8] | 曾义准, 张陶, 徐璎. 分析小鼠昼夜节律变化的行为学方法[J]. 遗传, 2022, 44(4): 346-357. |
[9] | 赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展[J]. 遗传, 2022, 44(12): 1128-1140. |
[10] | 梁佳琦, 刘畅, 张雯翔, 陈思禹. 肝脏分泌因子与代谢性疾病[J]. 遗传, 2022, 44(10): 853-866. |
[11] | 肖诚, 刘洁颖, 杨春如, 于淼. LMNA基因突变相关脂肪萎缩综合征的研究进展[J]. 遗传, 2022, 44(10): 913-925. |
[12] | 汤志全, 石丽, 熊晶. 溶质载体SLC家族在非酒精性脂肪性肝病中的研究进展[J]. 遗传, 2022, 44(10): 881-898. |
[13] | 张子寅, 周燕萍, 孟卓贤. CUT&Tag技术在代谢组织细胞的实验操作[J]. 遗传, 2022, 44(10): 958-966. |
[14] | 朱文静, 刘志玮. MDMPR:小鼠发育代谢表型库[J]. 遗传, 2021, 43(4): 375-384. |
[15] | 张恩权, 蔡伟聪, 李桂玲, 李健, 刘静雯. 赫氏颗石藻(Emiliania huxleyi)响应病毒感染的microRNA转录组分析[J]. 遗传, 2021, 43(11): 1088-1100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: