[1] Popplewell LJ, Trollet C, Dickson G, Graham IR. Design of phosphorodiamidate morpholino oligomers (PMOs) for the induction of exon skipping of the human DMD gene. Mol Ther, 2009, 17(3): 554-561.[2] Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat, 2009, 30(3): 293-299.[3] Wang B, Li J, Fu FH, Xiao X. Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res, 2008, 27(4): 421-426.[4] Salvatori F, Cantale V, Breveglieri G, Zuccato C, Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F, Canella A, Breda L, Rivella S, Gambari R. Development of K562 cell clones expressing β-globin mRNA carrying the b039 thalassemia mutation for the screening of correctors of stop codon mutations. Biotechnol Appl Biochem, 2009, 54(1): 41-52.[5] Cullen MJ, Walsh J, Nicholson LVB. Immunogold localization of the 43-kDa dystroglycan at the plasma membrane in control and dystrophic human muscle. Acta Neuropathol, 1994, 87(4): 349-354.[6] Ambrosio F, Ferrari RJ, Fitzgerald GK, Carvell G, Boninger ML, Huard J. Functional overloading of dystrophic mice enhances muscle-derived stem cell contribution to muscle contractile capacity. Arch Phys Med Rehabil, 2009, 90(1): 66-73.[7] Mueller GM, O'Day T, Watchko JF, Ontell M. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice. Hum Gene Ther, 2002, 13(9): 1081-1090.[8] Bachrach E, Perez AL, Choi YH, Illigens BMW, Jun SJ, del Nido P, McGowan FX, Li S, Flint A, Chamberlain J, Kunkel LM. Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle Nerve, 2006, 34(1): 44-52.[9] Parker MH, Kuhr C, Tapscott SJ, Storb R. Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs. Mol Ther, 2008, 16(7): 1340-1346.[10] Hirst RC, McCullagh KJ, Davies KE. Utrophin upregulation in Duchenne muscular dystrophy. Acta Myol, 2005, 24(3): 209-216.[11] Gyrd-Hansen M, Krag TOB, Rosmarin AG, Khurana TS. Sp1 and the ets-related transcription factor complex GABP α/β functionally cooperate to activate the utrophin promoter. J Neurol Sci, 2002, 197(1-2): 27-35.[12] Freidenberg GR, Olefsky JM. Dissociation of insulin resistance and decreased insulin receptor binding in Duchenne muscular dystrophy. J Clin Endocrinol Metab, 1985, 60(2): 320-327.[13] Pozzoli U, Sironi M, Cagliani R, Comi GP, Bardoni A, Bresolin N. Comparative analysis of the human dystrophin and utrophin gene structures. Genetics, 2002, 160(2): 793-798.[14] Miller G, Wang EL, Nassar KL, Peter AK, Crosbie RH. Structural and functional analysis of the sarcoglycan-sarcospan sub-complex. Exp Cell Res, 2007, 313(4): 639-651.[15] Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol, 1998, 10(1): 131-139.[16] Anderson MS, Kunkel LM. The molecular and biochemical basis of Duchenne muscular dystrophy. Trends Biochem Sci, 1992, 17(8): 289-292.[17] Stocksley MA, Chakkalakal JV, Bradford A, Miura P, De Repentigny Y, Kothary R, Jasmin BJ. A 1.3 kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscul Disord, 2005, 15(6): 437-449.[18] Dennis CL, Tinsley JM, Deconinck AE, Davies KE. Molecular and functional analysis of the utrophin promoter. Nucleic Acids Res, 1996, 24(9): 1646-1652.[19] Logan C, Willard HF, Rommens JM, Joyner AL. Chromosomal localization of the human homeo box-contai |