[1] | Bai DP, Yang MM, Qu L, Chen YL . Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology, 2017,93:1-6. | [2] | Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS . Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 2003,22(38):5967-5975. | [3] | Doudna JA, Charpentier E. Genome editing . The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. [DOI] | [4] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [5] | Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC . Making designer mutants in model organisms. Development, 2014,141(21):4042-4054. | [6] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Corrigendum: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2016,34(2):210. [DOI] | [7] | He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B . Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016,44(9):e85. [DOI] | [8] | Auer TO, Duroure K, De Cian A, Concordet JP, Del BF . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014,24(1):142-153. | [9] | Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc, 2016,11(1):118-133. | [10] | Meyer M, de Angelis MH, Wurst W, Kuhn R . Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA, 2010,107(34):15022-15026. | [11] | Heyer WD, Ehmsen K T, Liu J . Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010,44:113-139. | [12] | Valerie K, Povirk LF . Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003,22(37):5792-5812. | [13] | Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, Madhusudan S, Benhasouna A, Tighe P, Ellis IO, Rakha EA . Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013,139(2):301-310. | [14] | Britton S, Coates J, Jackson SP . A new method for high- resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013,202(3):579-595. | [15] | Gottlieb TM, Jackson SP . The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 1993,72(1):131-142. | [16] | Ma Y, Pannicke U, Schwarz K, Lieber MR . Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell, 2002,108(6):781-794. | [17] | Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A . DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature, 2000,404(6777):510-514. | [18] | Lieber MR . The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem, 2010,79:181-211. | [19] | Aceytuno R D, Piett C G, Havali-Shahriari Z, Edwards R A, Rey M, Ye R, Javed F, Fang S, Mani R, Weinfeld M, Hammel M, Tainer J A, Schriemer D C ,Lees-Miller S P, Glover J . Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex. Nucleic Acids Res, 2017,45(10):6238-6251. | [20] | Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, Schriemer DC, Lees-Miller SP, Tainer JA . XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem, 2011,286(37):32638-32650. | [21] | Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC . Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J, 2002,21(11):2827-2832. | [22] | Bertolini LR, Bertolini M, Maga EA, Madden KR, Murray JD . Increased gene targeting in Ku70 and Xrcc4 transiently deficient human somatic cells. Mol Biotechnol, 2009,41(2):106-114. | [23] | Basu S, Aryan A, Overcash JM, Samuel GH, Anderson MA, Dahlem TJ, Myles KM, Adelman ZN . Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci USA, 2015,112(13):4038-4043. | [24] | Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R . Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol, 2015,33(5):543-548. | [25] | Li G, Zhang X, Zhong C, Mo J, Quan R, Yang J, Liu D, Li Z, Yang H, Wu Z . Small molecules enhance CRISPR/ Cas9-mediated homology-directed genome editing in primary cells. Sci Rep, 2017,7(1):8943. | [26] | Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan W, Cheng T, Zhang XB . Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol, 2017,18(1):35. [DOI] | [27] | Lee JS, Grav LM, Pedersen LE, Lee GM, Kildegaard HF . Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/ Cas9 and fluorescent enrichment. Biotechnol Bioeng, 2016,113(11):2518-2523. | [28] | Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc, 2016,11(1):118-133. | [29] | Li G, Liu D, Zhang X, Quan R, Zhong C, Mo J, Huang Y, Wang H, Ruan X, Xu Z, Zheng E, Gu T, Hong L, Li Z, Wu Z, Yang H . Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts. Int J Biochem Cell Biol, 2018,99:154-160. | [30] | Yang Y, Wang K, Wu H, Jin Q, Ruan D, Ouyang Z, Zhao B, Liu Z, Zhao Y, Zhang Q, Fan N, Liu Q, Guo S, Bu L, Fan Y, Sun X, Li X, Lai L . Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineeering. J Mol Cell Biol, 2016,8(2):174-177. | [31] | Blais V, Gao H, Elwell CA, Boddy MN, Gaillard PH, Russell P, Mcgowan CH . RNA interference inhibition of Mus81 reduces mitotic recombination in human cells. Mol Biol Cell, 2004,15(2):552-562. | [32] | Panier S, Durocher D . Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat Rev Mol Cell Biol, 2013,14(10):661-672. | [33] | Li GL, Zhong CL, Mo JX, Quan R, Wu ZF, Li ZC, Yang HQ, Zhang XW . Advances in site-specific integration of transgene in animal genome. Hereditas (Beijing), 2017 ( 02):98-109. | [33] | 李国玲, 钟翠丽, 莫健新, 全绒, 吴珍芳, 李紫聪, 杨化强, 张献伟 . 动物基因组定点整合转基因技术研究进展. 遗传, 2017(02):98-109. | [34] | Zhou JW, Xu QP, Yao J, Yu SM, Cao SZ . CRISPR/Cas9 genome editing technique and its application in site- directed genome modification of animals.Hereditas (Beijing), 2015(10):1011-1020. | [34] | 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠 . CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015(10):1011-1020. | [35] | Ceccaldi R, Rondinelli B , D 'Andrea A . Repair pathway choices and consequences at the double-strand break. Trends Cell Biol, 2016,26(1):52-64. | [36] | Chang H, Pannunzio NR, Adachi N, Lieber MR . Non- homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017,18(8):495-506. | [37] | Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J . RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun, 2016,7:10548. [DOI] |
|