遗传 ›› 2021, Vol. 43 ›› Issue (8): 792-801.doi: 10.16288/j.yczz.21-118
马克学(), 李睿, 郭芳莹, 宋鸽鸽, 吴萌, 陈广文(), 刘德增
收稿日期:
2021-03-30
修回日期:
2021-06-21
出版日期:
2021-08-20
发布日期:
2021-07-21
通讯作者:
陈广文
E-mail:makexue@sina.com;Chengw0183@sina.com
作者简介:
马克学,博士,副教授,硕士生导师,研究方向:涡虫再生和抗逆性的分子机制。E-mail: 基金资助:
Kexue Ma(), Rui Li, Fangying Guo, Gege Song, Meng Wu, Guangwen Chen(), Dezeng Liu
Received:
2021-03-30
Revised:
2021-06-21
Online:
2021-08-20
Published:
2021-07-21
Contact:
Chen Guangwen
E-mail:makexue@sina.com;Chengw0183@sina.com
Supported by:
摘要:
细胞自噬基因Atg6在细胞自噬过程中发挥重要作用,其功能缺陷影响神经发生。涡虫是研究中枢神经系统(central nervous system, CNS)再生的良好模型,其头部切除后1周就能再生出一个新的头部。因此,研究Atg6基因在涡虫CNS再生中的作用对探究自噬调控神经发生具有重要意义。本研究首次报道了日本三角涡虫(Dugesia japonica) Atg6基因(DjAtg6)的分子特征,并利用RNAi技术研究了其在涡虫CNS再生中作用。结果显示:DjAtg6 cDNA全长1366 bp,编码423个氨基酸。DjATG6含有ATG6/Beclin 1蛋白家族的Coil-Coil结构域和β折叠α螺旋自噬功能结构域。涡虫沿咽前咽后切割后,DjAtg6表达量显著增加,其转录本主要在新再生的脑神经节表达。RNAi-DjAtg6引起涡虫头部再生迟缓、脑神经结构偏小,并下调神经相关基因的表达。此外,本研究还发现,RNAi-DjAtg6不影响涡虫干细胞的增殖,但下调细胞迁移相关基因mmp1和mmp2的表达,且干扰mmp1和mmp2的表达影响涡虫头再生。因此,本研究结果表明,DjAtg6在涡虫CNS再生的组织重构中发挥重要作用,干扰DjAtg6影响涡虫CNS再生可能与细胞迁移有关,其详细的分子机制尚需进行深入研究。
马克学, 李睿, 郭芳莹, 宋鸽鸽, 吴萌, 陈广文, 刘德增. 细胞自噬基因Atg6在涡虫中枢神经系统再生中的功能研究[J]. 遗传, 2021, 43(8): 792-801.
Kexue Ma, Rui Li, Fangying Guo, Gege Song, Meng Wu, Guangwen Chen, Dezeng Liu. Functional analysis of autophagy-related gene Atg6 in planarian central nervous system regeneration[J]. Hereditas(Beijing), 2021, 43(8): 792-801.
附表1
本研究所用引物信息"
引物名称 | 用途 | 序列 | 长度(bp) |
---|---|---|---|
5GSP1 | 5ʹ-RACE | 5ʹ-GCTATTTCTCTATCTAACTGATC-3ʹ | 565 |
5GSP2 | 5ʹ-RACE | 5ʹ-CAGTAAACTCTGTTCTTCTTCTTCC-3ʹ | 512 |
3GSP1 | 3ʹ-RACE | 5ʹ-TACCTGAAACTCCAGTCGAATGGC-3ʹ | 562 |
3GSP2 | 3ʹ-RACE | 5ʹ-TTGCAGAATATTCTCAGGAAGATGG-3ʹ | 500 |
qAtg6F | qPCR | 5ʹ-GGAACAATTATGGGAGATGC-3ʹ | 281 |
qAtg6R | qPCR | 5ʹ-AATTCCGCCAGTAAACTCTG -3ʹ | |
Atg6F1 | WISH | 5ʹ-GTTAATTGTAAAAAGTGTTCCTCACCGTT-3ʹ | 1212 |
Atg6R1 | WISH | 5ʹ-ATACTGTTTGAATGATGCTTTGACC-3ʹ | |
Atg6F2 | dsRNA | 5ʹ-ATCAACTTCAGATCATCCCATGTG-3ʹ | 946 |
Atg6R2 | dsRNA | 5ʹ-ATACTGTTTGAATGATGCTTTGACC-3ʹ | |
β-cateninF | dsRNA | 5ʹ-ACAACCATCGAATCTTATCCGCCAG-3ʹ | 1325 |
β-cateninR | dsRNA | 5ʹ-CATTGTGTAACCGAATTATGTCTGT-3ʹ | |
GFPF | dsRNA | 5ʹ-CGTGCAGTGCTTCAGCCGCTACCCC-3ʹ | 507 |
GFPR | dsRNA | 5ʹ-AGCTCGTCCATGCCGTGAGTGATCC-3ʹ | |
coeF | qPCR | 5ʹ-GCACCAGGAAGATTCGCATACAT-3ʹ | 284 |
coeR | qPCR | 5ʹ-GTTAGGATTATTGGAGGCAGTAGAT-3ʹ | |
soxB2F | qPCR | 5ʹ-AGTAAGTCCTCATTCAGCCAGT-3ʹ | 218 |
soxB2R | qPCR | 5ʹ-CACCTGTTAGCATTCCACTCAT-3ʹ | |
pax6F | qPCR | 5ʹ-ACGAGGTCATTCTGGAATCAATC-3ʹ | 246 |
pax6R | qPCR | 5ʹ-ACAACTGAACTGGTAGCAACTC-3ʹ | |
runtF | qPCR | 5ʹ-CCAATGCGAGGTGACTGACTTGAA-3ʹ | 291 |
runtR | qPCR | 5ʹ-TGATTCTCCAATGTGAAGGTAACTG-3ʹ | |
hesl-3F | qPCR | 5ʹ-CATCGTGAAGGAATTACCAGTC-3ʹ | 283 |
hesl-3R | qPCR | 5ʹ-TACTCGTCTGTGCAGGATAATG-3ʹ | |
pcnaF | qPCR | 5ʹ-AGCTACCGGAGATATTGGTAATGG-3ʹ | 168 |
pcnaR | qPCR | 5ʹ-GAGACACGATAGGTGAAAGAGGC-3ʹ | |
piwiAF | qPCR | 5ʹ-GGTTATTCCACAACTATTACAAGAG-3ʹ | 220 |
piwiAR | qPCR | 5ʹ-AATCTACTTCGTCATTGATATCC-3ʹ | |
mcm2F | qPCR | 5ʹ-GAGGAGGAGAAGAAGGATGT-3ʹ | 161 |
mcm2R | qPCR | 5ʹ-GCTGTGCTCAAACTGGGACT-3ʹ | |
mmp1F1 | qPCR | 5ʹ-ATGGCTGGAATAGAACAAGATGG-3ʹ | 202 |
mmp1R1 | qPCR | 5ʹ-GACGAACTTCTCCTTCAGACATAG-3ʹ | |
mmp2F1 | qPCR | 5ʹ-GAGCCTTAATAGTCGGTCTTCAAT-3ʹ | 259 |
mmp2R2 | qPCR | 5ʹ-TCCTTCGGTCCATTCTTCAGCTG-3ʹ | |
mmp1F2 | dsRNA | 5ʹ-TATGTCTGAAGGAGAAGTTCGTCG-3ʹ | 850 |
mmp1R2 | dsRNA | 5ʹ-ATCGTGATACGAACTTTGTCTTGC-3ʹ | |
mmp2F2 | dsRNA | 5ʹ-TGAGTTTTGCCGATGCTGAACACG-3ʹ | 746 |
mmp2R2 | dsRNA | 5ʹ-GTCTTATCTCTCACGATTGCTGCG-3ʹ | |
DjEF2F | qPCR | 5ʹ-TTAATGATGGGAAGATATGTTG-3ʹ | 250 |
DjEF2R | qPCR | 5ʹ-GTACCATAGGATCTGACTTTGC-3ʹ |
[1] |
Kenific CM, Wittmann T, Debnath J. Autophagy in adhesion and migration. J Cell Sci, 2016, 129(20):3685-3693.
pmid: 27672021 |
[2] |
Phadwal K, Watson AS, Simon AK. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci, 2013, 70(1):89-103.
doi: 10.1007/s00018-012-1032-3 |
[3] |
Fleming A, Rubinsztein DC. Autophagy in neuronal development and plasticity. Trends Neurosci, 2020, 43(10):767-779.
doi: 10.1016/j.tins.2020.07.003 |
[4] |
He M, Ding YT, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA, 2016, 113(40):11324-11329.
doi: 10.1073/pnas.1611282113 |
[5] |
Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F. The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis, 2014, 5(9):e1403.
doi: 10.1038/cddis.2014.358 |
[6] |
Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest, 2008, 118(6):2190-2199.
doi: 10.1172/JCI33585 pmid: 18497889 |
[7] |
Cebrià F, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Agata K. Dissecting planarian central nervous system regeneration by the expression of neural-specific genes. Dev Growth Differ, 2002, 44(2):135-146.
doi: 10.1046/j.1440-169x.2002.00629.x |
[8] |
Petersen CP, Reddien PW. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science, 2011, 332(6031):852-855.
doi: 10.1126/science.1202143 |
[9] |
Cowles MW, Brown DDR, Nisperos SV, Stanley BN, Pearson BJ, Zayas RM. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development, 2013, 140(23):4691-4702.
doi: 10.1242/dev.098616 |
[10] |
Roberts-Galbraith RH, Brubacher JL, Newmark PA. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife, 2016, 5:e17002.
doi: 10.7554/eLife.17002 |
[11] |
González-Estévez C. Autophagy meets planarians. Autophagy, 2009, 5(3):290-297.
pmid: 19164934 |
[12] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25(4):402-408
pmid: 11846609 |
[13] | Ma KX, Zhang YM, Song GG, Wu M, Chen GW. Identification of autophagy-related gene 7 and autophagic cell death in the planarian Dugesia japonica. Front Physiol, 2018, 9:1223 |
[14] |
Sánchez Alvarado A, Newmark PA. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA, 1999, 96(9):5049-5054.
doi: 10.1073/pnas.96.9.5049 |
[15] |
Vásquez-Doorman C, Petersen CP. Zic-1 expression in planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet, 2014, 10(7):e1004452
doi: 10.1371/journal.pgen.1004452 |
[16] |
Isolani ME, Abril JF, Saló E, Deri P, Bianucci AM, Batistoni R. Planarians as a model to assessin vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One, 2013, 8(2):e55649.
doi: 10.1371/journal.pone.0055649 |
[17] |
Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, Shibata N, Agata K, Newmark PA. RNA interference by feedingin vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn, 2013, 242(6):718-730.
doi: 10.1002/dvdy.v242.6 |
[18] |
Cebrià F, Newmark PA. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development, 2005, 132(16):3691-3703.
doi: 10.1242/dev.01941 |
[19] |
Cowles MW, Omuro KC, Stanley BN, Quintanilla CG, Zayas RM. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians. PLoS Genet, 2014, 10(10):e1004746.
doi: 10.1371/journal.pgen.1004746 |
[20] |
Li YQ, Zeng A, Han XS, Wang C, Li G, Zhang ZC, Wang JY, Qin YW, Jing Q. Argonaute-2 regulates the proliferation of adult stem cells in planarian. Cell Res, 2011, 21(12):1750-1754.
doi: 10.1038/cr.2011.151 |
[21] |
Mei Y, Glover K, Su MF, Sinha SC. Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond. Protein Sci, 2016, 25(10):1767-1785.
doi: 10.1002/pro.v25.10 |
[22] |
Chan ZCK, Oentaryo MJ, Lee CW. MMP-mediated modulation of ECM environment during axonal growth and NMJ development. Neurosci Lett, 2020, 724:134822.
doi: 10.1016/j.neulet.2020.134822 |
[23] |
Sîrbulescu RF, Ilieş I, Zupanc GKH. Matrix metalloproteinase-2 and -9 in the cerebellum of teleost fish: Functional implications for adult neurogenesis. Mol Cell Neurosci, 2015, 68:9-23.
doi: 10.1016/j.mcn.2015.03.015 pmid: 25827096 |
[24] |
Kenific CM, Debnath J. NBR1-dependent selective autophagy is required for efficient cell-matrix adhesion site disassembly. Autophagy, 2016, 12(10):1958-1959.
pmid: 27484104 |
[25] |
Petri R, Pircs K, Jönsson ME, Åkerblom M, Brattås PL, Klussendorf T, Jakobsson J. let-7 regulates radial migration of new-born neurons through positive regulation of autophagy. EMBO J, 2017, 36(10):1379-1391.
doi: 10.15252/embj.201695235 |
[1] | 赵欢, 周斌. 胰岛beta细胞再生研究进展[J]. 遗传, 2022, 44(5): 370-382. |
[2] | 宋亚坤,张敏,王翘楚,彭玉荔,贾方兴,余春红. 利用RNA干扰技术沉默基因表达在本科实验教学中的设计与实践[J]. 遗传, 2019, 41(7): 653-661. |
[3] | 全绒, 李国玲, 莫健新, 钟翠丽, 李紫聪, 顾婷, 郑恩琴, 刘德武, 蔡更元, 吴珍芳, 张献伟. RNA干扰猪NHEJ通路修复因子对HR效率的影响[J]. 遗传, 2018, 40(9): 749-757. |
[4] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[5] | 王永煜,余薇,周斌. Hippo信号通路与心血管发育及疾病调控[J]. 遗传, 2017, 39(7): 576-587. |
[6] | 顾远, 张雷, 余发星. Hippo信号通路在肠道稳态、再生及癌变过程中的作用及机制[J]. 遗传, 2017, 39(7): 588-596. |
[7] | 付思玲,赵婉滢,张雯婧,宋海,季红斌,汤楠. Hippo信号通路在肺发育、再生和疾病中的功能[J]. 遗传, 2017, 39(7): 597-606. |
[8] | 李玉席, 李俊宏, 周大旺. Hippo信号通路与肝脏稳态调控及疾病发生[J]. 遗传, 2017, 39(7): 607-616. |
[9] | 张晓玲,龙芸,葛飞,管中荣,张晓祥,王艳丽,沈亚欧,潘光堂. 玉米幼胚胚性愈伤组织再生能力相关性状遗传研究[J]. 遗传, 2017, 39(2): 143-155. |
[10] | 范晴晴, 孟飞龙, 房冉, 李高鹏, 赵小立. Wnt信号通路在毛细胞分化和再生过程中的作用[J]. 遗传, 2017, 39(10): 897-907. |
[11] | 许崇凤,段子渊. 中华民族永生细胞库在生命科学研究中的支撑作用[J]. 遗传, 2017, 39(1): 75-86. |
[12] | 王棋文, 靳伟, 常翠芳, 徐存拴. 基于IPA分析自噬对大鼠肝再生中树突状细胞的调节作用[J]. 遗传, 2015, 37(3): 276-282. |
[13] | 王棋文,常翠芳,谷宁宁,潘翠云,徐存拴. 自噬在肝再生中的作用[J]. 遗传, 2015, 37(11): 1116-1124. |
[14] | 吴楠, 王丕武, 李丹, 代力强, 郑成忠, 卢实, 才源, 张卓, 曲静, 夏海丰. 大豆查尔酮还原酶基因CHR1的功能研究[J]. 遗传, 2014, 36(7): 707-712. |
[15] | 陈元渊, 陈红岩, 卢大儒. SNARE蛋白调控细胞自噬的分子机制[J]. 遗传, 2014, 36(6): 547-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: