[1] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol, 2002, 49(3-4): 373-385.[2] Woodward AW, Bartel B. A receptor for auxin. Plant Cell, 2005, 17(9): 2425-2429.[3] Quint M, Gray WM. Auxin signaling. Curr Opin Plant Biol, 2006, 9(5): 448-453.[4] Tiwari SB, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 2003, 15(2): 533-543.[5] Remington DL, Vision TJ, Guilfoyle TJ, Reed JW. Con-trasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol, 2004, 135(3): 1738-1752.[6] Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 2007, 394(1-2): 13-24.[7] Xing HY, Pudake RN, Guo GG, Xing GF, Hu ZR, Zhang YR, Sun QX, Ni ZF. Genome-wide identification and expression profiling of Auxin Response Factor (ARF) gene family in maize. BMC Genomics, 2011, 12(1): 178.[8] Kumar R, Tyagi AK, Sharma AK. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics, 2011, 285(3): 245-260.[9] Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol, 2007, 7(1): 59.[10] Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu GX, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell, 2005, 17(2): 444-463.[11] Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA, 1999, 96(10): 5844-5849.[12] Wang SC, Tiwari SB, Hagen G, Guilfoyle TJ. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell, 2005, 17(7): 1979-1993.[13] Wilmoth JC, Wang SC, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J, 2005, 43(1): 118-130.[14] Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10(5): 453-460.[15] Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development, 2004, 131(5): 1089-1100.[16] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 1997, 9(11): 1963-1971.[17] Kim J, Harter K, Theologis A. Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA, 1997, 94(22): 11786-11791.[18] Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J, 1999, 19(3): 309-319.[19] Attia KA, Abdelkhalik AF, Ammar MH, Wei C, Yang J, Lightfoot DA, El-Sayed WM, El-Shemy HA. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11(Suppl. 1): i29-i34.[20] Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132(20): 4563-4574.[21] Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133(2): 251-261.[22] Okushima Y, Mitina I, Quach HL, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic develop-mental regulator. Plant J, 2005, 43(1): 29-46.[23] Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modula-tion of KANADI activity. Plant Cell, 2005, 17(11): 2899-2910.[24] Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development, 1997, 124(22): 4481-4491.[25] Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998, 17(5): 1405-1411.[26] Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell, 2006, 10(2): 265-270.[27] Wenzel CL, Schuetz M, Yu Q, Mattsson J. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J, 2007, 49(3): 387-398.[28] Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132(18): 4107-4118.[29] Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006, 133(21): 4211-4218.[30] Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J, 2004, 40(3): 333-343.[31] Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR8 is a negative regu-lator of fruit initiation in Arabidopsis. Plant Cell, 2006, 18(8): 1873-1886.[32] Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005, 17(8): 2204-2216.[33] Li JS, Dai XH, Zhao YD. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol, 2006, 140(3): 899-908.[34] de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J, 2009, 57(1): 160-170.[35] Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res, 2010, 38(4): 1382-1391.[36] Waller F, Furuya M, Nick P. OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol, 2002, 50(3): 415-425.[37] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.[38] Williams L, Carles CC, Osmont KS, Fletcher JC. A data-base analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA, 2005, 102(27): 9703-9708.[39] Allen E, Xie ZX, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2): 207-221.[40] Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta, 1996, 200(2): 229-237.[41] Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol, 2002, 49(3-4): 387-400.[42] Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W. DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development, 2009, 136(10): 1643-1651.[43] Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU. Hormonal control of the shoot stem-cell niche. Nature, 2010, 465(7301): 1089-1092.[44] Donner TJ, Sherr I, Scarpella E. Regulation of prepro-cambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development, 2009, 136(19): 3235-3246.[45] Liscum E, Briggs WR. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 1995, 7(4): 473-485.[46] Stowe-Evans EL, Harper RM, Motchoulski AV, Liscum E. NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol, 1998, 118(4): 1265-1275.[47] Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000, 12(5): 757-770.[48] Watahiki MK, Yamamoto KT. The massugu1 mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol, 1997, 115(2): 419-426.[49] Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell, 2007, 19(1): 118-130.[50] Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot, 2010, 61(5): 1419-1430.[51] Sessions RA, Zambryski PC. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development, 1995, 121(5): 1519-1532.[52] Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot, 2008, 59(2): 273-288.[53] Wu B, Li YH, Wu JY, Chen QZ, Huang X, Chen YF, Huang XL. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. Mol Biol Rep, 2011, 38(5): 3189-3194.[54] Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Iv-anchenko MG, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008, 105(25): 8790-8794.[55] Guilfoyle T. Plant biology: sticking with auxin. Nature, 2007, 446(7136): 621-622.[56] Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Rob-inson CV, Estelle M, Zheng N. Mechanism of auxin per-ception by the TIR1 ubiquitin ligase. Nature, 2007, 446(7136): 640-645.[57] Vert G, Walcher CL, Chory J, Nemhauser JL. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc Natl Acad Sci USA, 2008, 105(28): 9829-9834.[58] Jung JH, Lee M, Park CM. A transcriptional feedback loop modulating signaling crosstalks between auxin and brass-inosteroid in Arabidopsis. Mol Cells, 2010, 29(5): 449-456.[59] Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005, 438(7071): 1172-1175.[60] Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S. Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol, 2010, 51(1): 164-175.[61] de Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set. J Exp Bot, 2009, 60(5): 1523-1532.[62] de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot, 2010, 62(2): 617-626.[63] Liu XD, Huang J, Wang Y, Khanna K, Xie ZX, Owen HA, Zhao DZ. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regu-lating its expression. Plant J, 2010, 62(3): 416-428.[64] Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 tasiRNA affects developmental timing and patterning in Arabidopsis. Curr Biol, 2006, 16(9): 939-944.[65] Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science, 1997, 276(5320): 1865-1868.[66] Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, 17(5): 1360-1375.[67] Schlereth A, Möller B, Liu WL, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, 464(7290): 913-917.[68] Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and ac-tivity are modulated by auxin. Plant Cell, 2001, 13(12): 2809-2822.[69] Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J, 2005, 24(10): 1874-1885.[70] Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 2008, 453(7198): 1094-1097.[71] Shani E, Yanai O, Ori N. The role of hormones in shoot apical meristem function. Curr Opin Plant Biol, 2006, 9(5): 484-489.[72] Moubayidin L, Di Mambro R, Sabatini S. Cytokinin-auxin crosstalk. Trends Plant Sci, 2009, 14(10): 557-562.[73] Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 1957, 54(11): 118-130.[74] Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 2007, 134(19): 3539-3548. |