[1] Volkmann D, Baluska F. Gravity: one of the driving forces for evolution. Protoplasma , 2006, 229(2-4): 143- 148. [2] Firn RD, Digby J. Solving the puzzle of gravitropis-has a lost piece been found?. Planta , 1997, 203(Suppl.1): S159-S163. [3] Chen RJ, Rosen E, Masson PH. Gravitropism in higher plants. Plant Physiol , 1999, 120(2): 343-350. [4] Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma , 2015, doi:10.1007/s00709-015-0859-5. [5] Yoshihara T, Spalding EP, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J , 2013, 74(2): 267- 279. [6] Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res , 2007, 17(5): 402-410. [7] Strohm AK, Baldwin KL, Masson PH. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci , 2012, 3: 274. [8] Blancaflor EB, Fasano JM, Gilroy S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol , 1998, 116(1): 213-222. [9] Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana . Plant J , 1998, 14(4): 425-430. [10] Coutand C, Pot G, Badel E. Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees , 2014, 28(3): 687-697. [11] Morita MT. Directional gravity sensing in gravitropism. Annu Rev Plant Biol , 2010, 61: 705-720. [12] Saito C, Morita MT, Kato T, Tasaka M. Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell , 2005, 17(2): 548-558. [13] Nakamura M, Toyota M, Tasaka M, Morita MT. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell , 2011, 23(5): 1830-1848. [14] Band LR, Wells DM, Larrieu A, Sun JY, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping- point mechanism. Proc Natl Acad Sci USA , 2012, 109(12): 4668-4673. [15] Sack FD. Plastids and gravitropic sensing. Planta , 1997, 203(Suppl. 1): S63-S68. [16] Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K. Gravity- regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA , 2003, 100(5): 2987-2991. [17] Staves MP. Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta , 1997, 203(Suppl.1): S79-S84. [18] Monshausen GB, Miller ND, Murphy AS, Gilroy S. Dynamics of auxin-dependent Ca 2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J , 2011, 65(2): 309-318. [19] Braun M. Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma , 2002, 219(3-4): 150-159. [20] Limbach C, Hauslage J, Schafer C, Braun M. How to activate a plant gravireceptor: early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol , 2005, 139(2): 1030-1040. [21] Yoder TL, Zheng HQ, Todd P, Staehelin LA. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol , 2001, 125(2): 1045-1060. [22] Morita |