遗传 ›› 2016, Vol. 38 ›› Issue (7): 589-602.doi: 10.16288/j.yczz.16-127
• 特邀综述 • 下一篇
武迪, 黄林周, 高谨, 王永红
收稿日期:
2016-04-13
出版日期:
2016-07-20
发布日期:
2016-07-20
作者简介:
武迪,在读硕士研究生,专业方向:植物营养学。E-mail: wudi@genetics.ac.cn
基金资助:
Di Wu, Linzhou Huang, Jin Gao, Yonghong Wang
Received:
2016-04-13
Online:
2016-07-20
Published:
2016-07-20
摘要: 重力是调节植物生长发育和形态建成的重要环境因子。植物感受到重力刺激后可以通过重力反应来协调自身各个器官的生长方向与重力方向之间的最适角度。植物重力反应过程分为重力信号的感受、重力信号的转导、生长素不对称分布的形成和重力反应器官的弯曲生长4个阶段。近年来,随着大量重力反应缺陷突变体的鉴定及其控制基因的功能解析,重力信号的感受和生长素不对称分布的分子机制等方面的研究取得了重要进展。作为植物适应环境变化的重要手段之一,重力反应还可以通过调节水稻(Oryza sativa L.)的分蘖角度实现对水稻株型和产量的调控。因此,研究植物的重力反应,不仅有助于解析植物生长发育的调控机制,对于作物株型的改良也具有重要的指导意义。然而,重力反应的分子机制及其调控网络仍不清楚。本文综述了近年来植物重力反应的调控机理及其调控水稻分蘖角度的作用机制,并对该领域未来的研究方向和热点进行了展望。
武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制[J]. 遗传, 2016, 38(7): 589-602.
Di Wu, Linzhou Huang, Jin Gao, Yonghong Wang. The molecular mechanism of plant gravitropism[J]. HEREDITAS(Beijing), 2016, 38(7): 589-602.
[1] Volkmann D, Baluska F. Gravity: one of the driving forces for evolution. Protoplasma , 2006, 229(2-4): 143- 148. [2] Firn RD, Digby J. Solving the puzzle of gravitropis-has a lost piece been found?. Planta , 1997, 203(Suppl.1): S159-S163. [3] Chen RJ, Rosen E, Masson PH. Gravitropism in higher plants. Plant Physiol , 1999, 120(2): 343-350. [4] Kolesnikov YS, Kretynin SV, Volotovsky ID, Kordyum EL, Ruelland E, Kravets VS. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma , 2015, doi:10.1007/s00709-015-0859-5. [5] Yoshihara T, Spalding EP, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J , 2013, 74(2): 267- 279. [6] Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res , 2007, 17(5): 402-410. [7] Strohm AK, Baldwin KL, Masson PH. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front Plant Sci , 2012, 3: 274. [8] Blancaflor EB, Fasano JM, Gilroy S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol , 1998, 116(1): 213-222. [9] Fukaki H, Wysocka-Diller J, Kato T, Fujisawa H, Benfey PN, Tasaka M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana . Plant J , 1998, 14(4): 425-430. [10] Coutand C, Pot G, Badel E. Mechanosensing is involved in the regulation of autostress levels in tension wood. Trees , 2014, 28(3): 687-697. [11] Morita MT. Directional gravity sensing in gravitropism. Annu Rev Plant Biol , 2010, 61: 705-720. [12] Saito C, Morita MT, Kato T, Tasaka M. Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the Arabidopsis inflorescence stem. Plant Cell , 2005, 17(2): 548-558. [13] Nakamura M, Toyota M, Tasaka M, Morita MT. An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing. Plant Cell , 2011, 23(5): 1830-1848. [14] Band LR, Wells DM, Larrieu A, Sun JY, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping- point mechanism. Proc Natl Acad Sci USA , 2012, 109(12): 4668-4673. [15] Sack FD. Plastids and gravitropic sensing. Planta , 1997, 203(Suppl. 1): S63-S68. [16] Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K. Gravity- regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA , 2003, 100(5): 2987-2991. [17] Staves MP. Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta , 1997, 203(Suppl.1): S79-S84. [18] Monshausen GB, Miller ND, Murphy AS, Gilroy S. Dynamics of auxin-dependent Ca 2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J , 2011, 65(2): 309-318. [19] Braun M. Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma , 2002, 219(3-4): 150-159. [20] Limbach C, Hauslage J, Schafer C, Braun M. How to activate a plant gravireceptor: early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol , 2005, 139(2): 1030-1040. [21] Yoder TL, Zheng HQ, Todd P, Staehelin LA. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol , 2001, 125(2): 1045-1060. [22] Morita MT, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol , 2004, 7(6): 712-718. [23] Baldwin KL, Strohm AK, Masson PH. Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot , 2013, 100(1): 126-142. [24] Plieth C, Trewavas AJ. Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol , 2002, 129(2): 786-796. [25] Toyota M, Furuichi T, Tatsumi H, Sokabe M. Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol , 2008, 146(2): 505-514. [26] Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM. Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. Planta , 2011, 233(5): 911-920. [27] Urbina DC, Silva H, Meisel LA. The Ca 2+ pump inhibitor, thapsigargin, inhibits root gravitropism in Arabidopsis thaliana . Biol Res , 2006, 39(2): 289-296. [28] Zhang S, Chen S, Chen F, Jiang B. The role of ionic calcium in the gravitropic response of a creeping chrysanthemumcultivar. Russ J Plant Physl , 2011, 58(4): 696-702. [29] Bushart TJ, Cannon A, Clark G, Roux SJ. Structure and function of CrACA1, the major PM-type Ca 2+ -ATPase, expressed at the peak of the gravity-directed trans-cellcalcium current in spores of the fern Ceratopteris richardii . Plant Biol , 2014, 16(Suppl 1): S151-S157. [30] Perbal G, Driss-Ecole D. Mechanotransduction in gravisensing cells. Trends Plant Sci , 2003, 8(10): 498-504. [31] Perera IY, Hung CY, Brady S, Muday GK, Boss WF. A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol , 2006, 140(2): 746-760. [32] Wang Y, Lin WH, Chen X, Xue HW. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res , 2009, 19 (10): 1191-1204. [33] Andreeva Z, Barton D, Armour WJ, Li MY, Liao LF, McKellar HL, Pethybridge KA, Marc J. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Planta , 2010, 232(5): 1263-1279. [34] Meijer HJG, Munnik T. Phospholipid-based signaling in plants. Annu Rev Plant Biol , 2003, 54: 265-306. [35] Mei Y, Jia WJ, Chu YJ, Xue HW. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res , 2012, 22(3): 581-597. [36] Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta , 2009, 1793(6): 933-940. [37] Blatt MR, Thiel G, Trentham DR. Reversible inactivation of K + channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature , 1990, 346(6286): 766-769. [38] Gilroy S, Read ND, Trewavas AJ. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature , 1990, 346 (6286): 769-771. [39] Monshausen GB, Sievers A. Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta , 2002, 215(6): 980-988. [40] Johannes E, Collings DA, Rink JC, Allen NS. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol , 2001, 127(1): 119-130. [41] Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S. Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell , 2001, 13(4): 907-921. [42] Young LM, Evans ML, Hertel R. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays . Plant Physiol , 1990, 92(3): 792-796. [43] Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH. Gravity signal transduction in primary roots. Ann Bot , 2005, 96(5): 737-743. [44] Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis . Nature , 2002, 415 (6873): 806-809. [45] Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell , 2007, 19(6): 1838-1850. [46] Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature , 2012, 482(7383): 103-106. [47] Luschnig C, Gaxiola RA, Grisafi P, Fink GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana . Genes Dev , 1998, 12(14): 2175-2187. [48] Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell , 2000, 12 (5): 757-770. [49] Edelmann HG. Ethylene perception generates gravicompetence in gravi-incompetent leaves of rye seedlings. J Exp Bot , 2002, 53(375): 1825-1828. [50] Cui DY, Neill SJ, Tang ZC, Cai WM. Gibberellin- regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot , 2005, 56(415): 1327-1334. [51] Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana . Plant Cell , 2011, 23(6): 2184-2195. [52] Vandenbussche F, Suslov D, De Grauwe L, Leroux O, Vissenberg K, Van der Straeten D. The role of brassinosteroids in shoot gravitropism. Plant Physiol , 2011, 156 (3): 1331-1336. [53] Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van der Straeten D. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot , 2013, 100(1): 215-225. [54] Park CH, Jang MS, Yun JH, Lee JE, Kim MK, Park SC, Kim SK. Effects of secondary mutation in det2-1 on root growth and development in Arabidopsis . J Plant Biol , 2014, 57(4): 255-263. [55] Sang DJ, Chen DQ, Liu GF, Liang Y, Huang LZ, Meng XB, Chu JF, Sun XH, Dong GJ, Yuan YD, Qian Q, Li JY, Wang YH. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci USA , 2014, 111(30): 11199-11204. [56] Vandenbussche F, Smalle J, Le J, Saibo NJ, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven LJ, Harren FJ, Van Onckelen H, Palme K, Verbelen JP, Van der Straeten D. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol , 2003, 131(3): 1228-1238. [57] Prayitno J, Rolfe BG, Mathesius U. The ethylene- insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol , 2006, 142(1): 168-180. [58] Löfke C, Zwiewka M, Heilmann I, Van Montagu MCE, Teichmann T, Friml J. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci USA , 2013, 110(9): 3627-3632. [59] Kim SK, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol , 2000, 123(3): 997-1004. [60] Kim TW, Lee SM, Joo SH, Yun HS, Lee Y, Kaufman PB, Kirakosyan A, Kim SH, Nam KH, Lee JS, Chang SC, Kim SK. Elongation and gravitropic responses of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ , 2007, 30(6): 679-689. [61] Nakamura A, Goda H, Shimada Y, Yoshida S. Brassinosteroid selectively regulates PIN gene expression in Arabidopsis . Biosci Biotechnol Biochem , 2004, 68(4): 952-954. [62] Cosgrove DJ. Cellular mechanisms underlying growth asymmetry during stem gravitropism. Planta , 1997, 203 (Suppl. 1): S130-S135. [63] Cleland R. Cell wall extension. Ann Rev Plant Physiol , 1971, 22: 197-222. [64] Wright LZ, Rayle DL. Inhibition of shoot geotropism by neutral buffers. Plant Physiol , 1982, 69(1): 278-279. [65] Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Bio , 2005, 6(11): 850-861. [66] Chen SL, Ehrhardt DW, Somerville CR. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA , 2010, 107(40): 17188-17193. [67] Walker LM, Sack FD. Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus . Planta , 1990, 181(1): 71-77. [68] Streb S, Egli B, Eicke S, Zeeman SC. The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiol , 2009, 151(4): 1769-1772. [69] Vitha S, Yang M, Sack FD, Kiss JZ. Gravitropism in the starch excess mutant of Arabidopsis thaliana . Am J Bot , 2007, 94(4): 590-598. [70] Tanimoto M, Tremblay R, Colasanti J. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Mol Biol , 2008, 67(1-2): 57-69. [71] Wu XR, Tang D, Li M, Wang KJ, Cheng ZK. Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol , 2013, 161(1): 317- 329. [72] Hashiguchi Y, Yano D, Nagafusa K, Kato T, Saito C, Uemura T, Ueda T, Nakano A, Tasaka M, Terao Morita M. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem. Plant Cell Physiol , 2014, 55(4): 22. [73] Nakajima K, Sonoda H, Mizoguchi T, Aoki J, Arai H, Nagahama M, Tagaya M, Tani K. A novel phospholipase A1 with sequence homology to a mammalian sec 23 p- interacting protein, p125. J Biol Chem , 2002, 277(13): 11329-11335. [74] Masson PH, Tasaka M, Morita MT, Guan C, Chen R, Boonsirichai K. Arabidopsis thaliana : a model for the study of root and shoot gravitropism. Arabidopsis Book, 2002, 1: e0043. [75] Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol , 1997, 138(3): 517-529. [76] Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA , 2003, 100(14): 8589-8594. [77] Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M. Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis . Plant Cell , 2002, 14(1): 47-56. [78] Silady RA, Kato T, Lukowitz W, Sieber P, Tasaka M, Somerville CR. The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans . Plant Physiol , 2004, 136(2): 3095-3103. [79] Zhang YH, Grant B, Hirsh D. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans . Mol Biol Cell , 2001, 12(7): 2011- 2021. [80] Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I. Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell , 2007, 19(1): 320-332. [81] Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, DoleZal K, Schlereth A, Jurgens G, Alonso JM. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell , 2008, 133 (1): 177-191. [82] Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana . Plant J , 2011, 67(5): 817-826. [83] Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J. SCF TIR1/AFB -auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. Embo J , 2013, 32(2): 260-274. [84] Leyser O. Regulation of shoot branching by auxin. Trends Plant Sci , 2003, 8(11): 541-545. [85] Gallavotti A. The role of auxin in shaping shoot architecture. J Exp Bot , 2013, 64(9): 2593-2608. [86] Petrasek J, Friml J. Auxin transport routes in plant development. Development , 2009, 136(16): 2675-2688. [87] Grunewald W, Friml J. The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. Embo J , 2010, 29(16): 2700-2714. [88] Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. Embo J , 1999, 18(8): 2066-2073. [89] Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science , 1996, 273(5277): 948-950. [90] Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, Estelle M. AXR4 is required for localization of the auxin influx facilitator AUX1. Science , 2006, 312(5777): 1218-1220. [91] Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J. Polar PIN localization directs auxin flow in plants. Science , 2006, 312(5775): 883. [92] Rahman A, Takahashi M, Shibasaki K, Wu SA, Inaba T, Tsurumi S, Baskin TI. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell , 2010, 22(6): 1762-1776. [93] Müller A, Guan CH, Galweiler L, Tänzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. Embo J , 1998, 17(23): 6903-6911. [94] Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol , 2006, 8(3): 249-256. [95] Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA , 2008, 105(46): 17812-17817. [96] Chen X, Naramoto S, Robert S, Tejos R, Löfke C, Lin DS, Yang ZB, Friml J. ABP1 and ROP6 GTPase signaling regulate clathrin-mediated endocytosis in Arabidopsis roots. Curr Biol , 2012, 22(14): 1326-1332. [97] Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. Transcriptional and hormonal regulation of gravitropism of woody stems in Populus . Plant cell , 2015, 27(10): 2800-2813. [98] Harrison BR, Masson PH. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J , 2008, 53(2): 380-392. [99] Boonsirichai K, Sedbrook JC, Chen RJ, Gilroy S, Masson PH. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity- induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell , 2003, 15(11): 2612-2625. [100] Kleine-Vehn J, Ding ZJ, Jones AR, Tasaka M, Morita MT, Friml J. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci USA , 2010, 107(51): 22344-22349. [101] Wang HZ, Yang KZ, Zou JJ, Zhu LL, Xie ZD, Morita MT, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun , 2015, 6: 8822. [102] Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell , 2005, 17(11): 2922-2939. [103] Noh B, Murphy AS, Spalding EP. Multidrug resistance - like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell , 2001, 13 (11): 2441-2454. [104] Noh B, Bandyopadhyay A, Peer WA, Spalding EP, Murphy AS. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature , 2003, 423(6943): 999-1002. [105] Lin RC, Wang HY. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol , 2005, 138(2): 949-964. [106] Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis . Plant Cell , 2007, 19(1): 131-147. [107] Christie JM, Murphy AS. Shoot phototropism in higher plants: new light through old concepts. Am J Bot , 2013, 100(1): 35-46. [108] Digby J, Firn RD. The gravitropic set-point angle (GSA): The identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ , 1995, 18(12): 1434-1440. [109] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control-the wonderfulness of lateralness. Curr Opin Plant Biol , 2015, 23: 124-131. [110] Firn RD, Wagstaff C, Digby J. The use of mutants to probe models of gravitropism. J Exp Bot , 2000, 51(349): 1323-1340. [111] Wang YH, Li JY. The plant architecture of rice ( Oryza sativa ). Plant Mol Biol , 2005, 59(1): 75-84. [112] Yoshihara T, Iino M. Identification of the gravitropism- related rice gene LAZY1 and elucidation of LAZY1- dependent and-independent gravity signaling pathways. Plant Cell Physiol , 2007, 48(5): 678-688. [113] Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ. TAC1 , a major quantitative trait locus controlling tiller angle in rice. Plant J , 2007, 52(5): 891-898. [114] Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet , 2008, 40(11): 1365-1369. [115] Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet , 2008, 40(11): 1360-1364. [116] Wang L, Xu YY, Zhang C, Ma QB, Joo SH, Kim SK, Xu ZH, Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One , 2008, 3(10): e3521. [117] Zhao L, Tan LB, Zhu ZF, Xiao LT, Xie DX, Sun CQ. PAY1 improves plant architecture and enhances grain yield in rice. Plant J , 2015, 83(3): 528-536. [118] Sasaki S, Yamamoto KT. Arabidopsis LAZY1 is a peripheral membrane protein of which the carboxy-terminal fragment potentially interacts with microtubules. Plant Biotechnol , 2015, 32(1): 103-108. [119] Dong ZB, Jiang C, Chen XY, Zhang T, Ding L, Song WB, Luo HB, Lai JS, Chen HB, Liu RY, Zhang XL, Jin WW. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol , 2013, 163(3): 1306-1322. [120] Sakuraba Y, Piao WL, Lim JH, Han SH, Kim YS, An G, Paek NC. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol , 2015, 56(12): 2325-2339. (责任编委: 吴为人) |
[1] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[2] | 李泽琴,李锦涛,邴杰,张根发. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J]. 遗传, 2019, 41(6): 534-547. |
[3] | 刘振宁, 袁黎, VenkatesanSundaresan, 余小林. 拟南芥CKI1基因上游转录调控因子筛选及鉴定[J]. 遗传, 2019, 41(5): 430-438. |
[4] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[5] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[6] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[7] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[8] | 李佳,刘运华,张余,陈晨,余霞,余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9): 837-846. |
[9] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[10] | 唐丽, 李曜魁, 张丹, 毛毕刚, 吕启明, 胡远艺, 韶也, 彭彦, 赵炳然, 夏石头. 基于基因组编辑技术的水稻靶向突变特征及遗传分析[J]. 遗传, 2016, 38(8): 746-755. |
[11] | 孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6): 532-542. |
[12] | 陈兆进, 丁传雨, 郑远. 拟南芥QUA1基因在光信号途径中的表达与功能分析[J]. 遗传, 2016, 38(5): 436-443. |
[13] | 帅海威, 孟永杰, 罗晓峰, 陈锋, 戚颖, 杨文钰, 舒凯. 生长素调控种子的休眠与萌发[J]. 遗传, 2016, 38(4): 314-322. |
[14] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[15] | 张红宇, 崔晓云, 侯飞雪, 王一伊, 吴挺开, 刘禹彤, 杨定乾, 张洪凯, 傅瑶, 张向阳, 李文丽, 吴先军. 水稻基因组加倍对籽粒大小调控基因表达的影响[J]. 遗传, 2016, 38(12): 1102-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: