遗传 ›› 2016, Vol. 38 ›› Issue (7): 589-602.doi: 10.16288/j.yczz.16-127

• 特邀综述 •    下一篇

植物重力反应的分子调控机制

武迪, 黄林周, 高谨, 王永红   

  1. 中国科学院遗传与发育生物学研究所,植物基因组学国家重点实验室与国家植物基因研究中心,北京 100101
  • 收稿日期:2016-04-13 出版日期:2016-07-20 发布日期:2016-07-20
  • 作者简介:武迪,在读硕士研究生,专业方向:植物营养学。E-mail: wudi@genetics.ac.cn
  • 基金资助:
    国家自然科学基金项目(编号:91417309)资助[Supported by the National Natural Science Foundation of China (No; 91417309)]

The molecular mechanism of plant gravitropism

Di Wu, Linzhou Huang, Jin Gao, Yonghong Wang   

  1. State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2016-04-13 Online:2016-07-20 Published:2016-07-20

摘要: 重力是调节植物生长发育和形态建成的重要环境因子。植物感受到重力刺激后可以通过重力反应来协调自身各个器官的生长方向与重力方向之间的最适角度。植物重力反应过程分为重力信号的感受、重力信号的转导、生长素不对称分布的形成和重力反应器官的弯曲生长4个阶段。近年来,随着大量重力反应缺陷突变体的鉴定及其控制基因的功能解析,重力信号的感受和生长素不对称分布的分子机制等方面的研究取得了重要进展。作为植物适应环境变化的重要手段之一,重力反应还可以通过调节水稻(Oryza sativa L.)的分蘖角度实现对水稻株型和产量的调控。因此,研究植物的重力反应,不仅有助于解析植物生长发育的调控机制,对于作物株型的改良也具有重要的指导意义。然而,重力反应的分子机制及其调控网络仍不清楚。本文综述了近年来植物重力反应的调控机理及其调控水稻分蘖角度的作用机制,并对该领域未来的研究方向和热点进行了展望。

关键词: 重力反应, 生长素, 分蘖角度, 拟南芥, 水稻

Abstract: Gravity is an important environmental factor that regulates plant growth and morphogenesis. In response to gravity stimulus, plants can set the optimum angle between the organs and the gravity vector. Plant gravitropism is divided into four sequential steps, including gravity perception, signal transduction, asymmetrical distribution of auxin, and organ curvature. In recent years, large numbers of mutants with defective gravitropism have been identified and genes involved in the regulation of gravitropism have been functionally characterized. In particular, progress has been achieved on elucidating the molecular mechanisms of gravity perception and asymmetrical distribution of auxin. As one of the most important strategies for plant to adapt environmental changes, gravitropism is also involved in the regulation of rice plant architecture and grain yield through modulating rice tiller angle. Therefore, the investigation of plant gravitropism not only contributes to decipher the regulatory mechanisms of plant growth and development, but also helps to guide the genetic improvement of crop architecture. However, the molecular mechanisms and regulatory network of gravitropism remain to be elusive. In this review, we focus on recent progress on elucidating molecular mechanisms underlying gravitropism and its involvement in regulating rice tiller angle, which is an important agronomic trait that determines rice plant architecture and thus grain yields.

Key words: gravitropism, auxin, tiller angle, Arabidopsis, Oryza sativa L.