[1] Vogel G. How does a single somatic cell become a whole plant? Science, 2005, 309(5731): 86.
[2] Doerner P. Plant meristems: what you see is what you get? Curr Biol, 2006, 16(2): R56–R58.
[3] Costa S, Shaw P. ‘Open minded’ cells: how cells can change fate. Trends Cell Biol, 2007, 17(3): 101–106.
[4] Vanyushin BF, Kirnos MD. DNA methylation in plants. Gene, 1988, 74(1): 117–121.
[5] Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, Roldán-Arjona T, Tiburcio AF, Altabella T, Buisine N, Quesneville H, Baudry A, Lepiniec L, Alaminos M, Rodríguez R, Lloyd A, Colot V, Bender J, Canal MJ, Esteller M, Fraga MF. Promoter DNA hyper-methylation and gene repression in undifferentiated Arabidopsis cells. PLoS One, 2008, 3(10): e3306.
[6] Reyna-López GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet, 1977, 253(6): 703–710.
[7] Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic se-quencing: Systematic investigation of critical experimen-tal parameters. Nucleic Acids Res, 2001, 29(13): e65.
[8] Yamada Y, Watanabe H, Miura F, Soejima H, Uchiyama M, Iwasaka T, Mukai T, Sakaki Y, Ito T. A comprehensive analysis of allelic methylation status of CpG islands on hu-man chromosome 21q. Genome Res, 2004, 14(2): 247–266.
[9] Fan SC, Fang F, Zhang XG, Zhang MQ. Putative zinc fin-ger protein binding sites are over-represented in the boundaries of methylation-resistant CpG islands in the human genome. PLoS One, 2007, 2(11): e1184.
[10] Cheong J, Yamada Y, Yamashita R, Irie T, Kanai A, Wakaguri H, Nakai K, Ito T, Saito I, Sugano S, Suzuki Y. Diverse DNA methylation statuses at alternative promoters of human genes in various tissues. DNA Research, 2006, 13(4): 155–167.
[11] Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767–774.
[12] Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH. Rice embryogenic calli express a unique set of mi-croRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580(1): 5111−5116.
[13] Xiong LZ, Xu CG, Saghai-Maroof MA, Zhang QF. Pat-terns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive ampli-fication polymorphism technique. Mol Genet Genomics, 1999, 261(3): 439–446.
[14] Vanneste S, Friml J. Auxin: A trigger for change in plant development. Cell, 2009, 136(6): 1005–1016.
[15] Rohila JS, Yang YN. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol, 2007, 49(6): 751–759.
[16] Reyna NS, Yang YN. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea in-fection. Mol Plant Microb Interact, 2006, 19(5): 530–540.
[17] Song FM, Goodman RM. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta, 2002, 215(6): 997–1005.
[18] Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, Lee JO, Kwon HB, Byun MO, Park SC. A rice (Oryza sa-tiva L.) MAP kinase gene, OsMAPK44, is involved in re-sponse to abiotic stresses. Plant Cell Tiss Org Cult, 2006, 85(2): 151–160.
[19] Mockaitis K, Howell SH. Auxin induces mitogenic acti-vated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J, 2000, 24(6): 785–796.
[20] Kovtun Y, Chiu WL, Zeng WK, Sheen J. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature, 1998, 395(6703): 716–720.
[21] Lee JS, Wang SC, Sritubti |