[1] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, Springer, 2009: 153-188.[2] Schafleitner R. Growing more potatoes with less water. Tropical Plant Biol, 2009, 2(3-4): 111-121.[3] Levy D. Tuber yield and tuber quality of several potato cultivars as affected by seasonal high temperatures and by water deficit in a semi-arid environment. Potato Res, 1986, 29(1): 95-107.[4] Byun MO, Kwon HB, Park SC. Recent advances in genetic engineering of potato crops for drought and saline stress tolerance. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, Springer, 2007: 713-737.[5] 焦志丽, 李勇, 吕典秋, 王晶英. 不同程度干旱胁迫对马铃薯幼苗生长和生理特性的影响. 中国马铃薯, 2011, 25(6): 329-333.[6] Crusciol CAC, Pulz AL, Lemos LB, Soratto RP, Lima GPP. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci, 2009, 49(3): 949-954.[7] André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry, 2009, 70(9): 1107-1116.[8] 苏源, 余萍, 孔垂思, 蔡翌阳, 杨静, 刘林, 李成云. 小麦幼苗根、茎和叶蛋白质双向电泳的初步研究. 分子植物育种, 2011, 9(49): 1366-1372.[9] Bradford MM. A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(1): 248-254.[10] Angelika G, Andreas K, Carsten L, Florian W, Walter W. Two-dimensional electrophoresis with immobilized pH gradients for proteome analysis. Technical University of Munich, München, Germany, 2007: 51-52.[11] Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol, 2005, 6(5): R44.[12] Roy A, Rushton PJ, Rohila JS. The potential of proteomics technologies for crop improvement under drought condi-tions. Crit Rev Plant Sci, 2011, 30(5): 471-490.[13] 钱刚, 平军娇, 张珍, 罗素元, 李学英, 杨明镇, 张达. 大麦Dhn6 基因的克隆、蛋白质结构预测与干旱胁迫表达模式. 遗传, 2011, 33(3): 270-277.[14] Ramachandra Reddy A, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and anti-oxidant metabolism in higher plants. J Plant Physiol, 2004, 161(11): 1189-1202.[15] Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Pro-teomics, 2011, 74(8): 1301-1322.[16] Mahmood T, Safdar W, Abbasi BH, Naqvi SMS. An over-view on the small heat shock proteins. Afr J Biotech-nol, 2009, 9(7): 927-939.[17] Heckathorn SA, Downs CA, Coleman JS. Small heat shock proteins protect electron transport in chloroplasts and mitochondria during stress. Amer Zool, 1999, 39(6): 865-876.[18] Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008, 27(2): 329-334.[19] Hu Y, Li WC, Xu YQ, Li GJ, Liao Y, Fu FL. Differential expression of candidate genes for lignin biosynthesis un-der drought stress in maize leaves. J Appl Genet, 2009, 50(3): 213-223.[20] Kim YH, Bae JM, Huh GH. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet po-tato in response to plant developmental stage and environmental stress. Plant Cell Rep, 2010, 29(7): 779-791.[21] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9(4): 4 |