[1] Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science, 1975, 187(4173): 226–232. <\p>
[2] Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 1975, 14(1): 9–25. <\p>
[3] Cokus SJ, Feng SH, Zhang XY, Chen ZG, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452(7184): 215–219. <\p>
[4] Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet, 2000, 9(16): 2395–2402. <\p>
[5] Gowher H, Liebert K, Hermann A, Xu GL, Jeltsch A. Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem, 2005, 280(14): 13341–13348. <\p>
[6] Jones PA, Liang GN. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009, 10(11): 805–811. <\p>
[7] Cao XF, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation. Curr Biol, 2003, 13(24): 2212–2217. <\p>
[8] Chan SWL, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6(5): 351–360. <\p>
[9] Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 2006, 126(6): 1189–1201. <\p>
[10] Lorincz MC, Dickerson DR, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol, 2004, 11(11): 1068–1075. <\p>
[11] 杨晓丹, 韩威, 刘峰. DNA甲基化与脊椎动物胚胎发育. 遗传, 2012, 34(9): 1108–1113. <\p>
[12] 王婕妤, 肖志坚. 表观遗传学调节子基因突变与骨髓增生异常综合征发生. 中国实验血液学杂志, 2011, 19(5): 1033–1039. <\p>
[13] 张广社, 周永明. 骨髓增生异常综合征DNA甲基化研究进展. 辽宁中医药大学学报, 2013, 15(12): 96–100. <\p>
[14] 王慧涵, 张国君, 姚鲲, 杨威, 廖爱军, 赵成海, 刘卓刚. SFRP5在白血病细胞中基因甲基化状态及蛋白表达分析. 中国医科大学学报, 2012, 41(12): 1119–1122. <\p>
[15] Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. A transposon-induced epigenetic change leads to sex determination in melon. Nature, 2009, 461(7267): 1135–1138. <\p>
[16] Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet, 2011, 7(8): E1002243. <\p>
[17] Gehring M, Henikoff S. DNA methylation dynamics in plant genomes. Biochim Biophys Acta, 2007, 1769(5–6): 276–286. <\p>
[18] Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 2001, 411(6834): 212–214. <\p>
[19] Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 2012, 13(7): 484–492. <\p>
[20] Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X, Lin JC, Liang G, Jones PA, Tanay A. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci USA, 2008, 105(35): 12979–12984. <\p>
[21] Taberlay PC, Kelly TK, Liu CC, You JS, De Carvalho DD, Miranda TB, Zhou XJ, Liang GM, Jones PA. Polycomb- repressed genes have permissive enhancers that initiate reprogramming. Cell, 2011, 147(6): 1283–1294. <\p>
[22] Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D. Chromosome-wid |