[1] Jackson SP, Bartek J. The DNA–damage response in human biology and disease. Nature, 2009, 461(7267): 1071–1078. <\p>
[2] Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell, 2010, 40(2): 179– 204. <\p>
[3] Jackson SP. The DNA–damage response: new molecular insights and new approaches to cancer therapy. Biochem Soc Trans, 2009, 37(Pt 3): 483–494. <\p>
[4] Huen MS, Chen J. Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci, 2010, 35(2): 101–108. <\p>
[5] Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev, 2011, 25(5): 409–433. <\p>
[6] Cheadle C, Fan J, Cho–Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Stability regulation of mRNA and the control of gene expression. Ann N Y Acad Sci, 2005, 1058: 196–204. <\p>
[7] Boucas J, Riabinska A, Jokic M, Herter–Sprie GS, Chen S, Höpker K, Reinhardt HC. Posttranscriptional regulation of gene expression–adding another layer of complexity to the DNA damage response. Front Genet, 2012, 3: 159. <\p>
[8] Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol, 2013, <\p>
[Epub ahead of print]. <\p>
[9] Wouters MD, van Gent DC, Hoeijmakers JH, Pothof J. MicroRNAs, the DNA damage response and cancer. Mutat Res, 2011, 717(1–2): 54–66. <\p>
[10] Stracker TH, Roig I, Knobel PA, Marjanovi? M. The ATM signaling network in development and disease. Front Genet, 2013, 4: 37. <\p>
[11] Lal A, Pan YF, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D. miR–24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol, 2009, 16(5): 492–498. <\p>
[12] Wang YM, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou XF, Tewari M, Furnari FB, Taniguchi T. MicroRNA– 138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res, 2011, 9(8): 1100–1111. <\p>
[13] Roos WP, Kaina B. DNA damage–induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett, 2013, 332(2): 237–248. <\p>
[14] Hu HL, Du LT, Nagabayashi G, Seeger RC, Gatti RA. ATM is down–regulated by N–Myc–regulated microRNA– 421. Proc Natl Acad Sci USA, 2010, 107(4): 1506–1511. <\p>
[15] Ng WL, Yan D, Zhang XM, Mo YY, Wang Y. Over– expression of miR–100 is responsible for the low–expression of ATM in the human glioma cell line: M059J. DNA Repair, 2010, 9(11): 1170–1175. <\p>
[16] Yan D, Ng WL, Zhang XM, Wang P, Zhang ZB, Mo YY, Mao H, Hao CH, Olson JJ, Curran WJ, Wang Y. Targeting DNA–PKcs and ATM with miR–101 sensitizes tumors to radiation. PloS ONE, 2010, 5(7): e11397. <\p>
[17] Song LB, Lin CY, Wu ZQ, Gong H, Zeng Y, Wu JH, Li MF, Li J. miR–18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PloS ONE, 2011, 6(9): e25454. <\p>
[18] Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J, Santarpia L, Piazza S, Cappelletti V, Daidone M, Agami R, Del Sal G. Oncogenic miR–181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle, 2013, 12(11): 1679–1687. <\p>
[19] Wang J, He J, Su F, Ding N, Hu W, Yao B, Wang W, Zhou G. Repression of ATR pathway by miR–185 enhances radiation–induced apoptosis and proliferation inhibition. Cell Death Disease, 2013, 4(6): e699. <\p>
[20] Chang L, Hu WT, Ye CY, Yao B, Song L, Wu X, Ding N, Wang JF, Zhou GM. miR–3928 activates ATR pathway by targeting dicer. RNA Biol, 2012, 9(10): 1247–1254. <\p>
[21] Rosen EM. BRCA1 in the DNA damage response and at telomeres. Front Genet, 2013, 4: 85. <\p>
[22] Li MQ, Song WT, Tang ZH, Lv SX, Lin L, Sun H, Li QS, Yang Y, Hong H, Chen XS. Nanoscaled poly(L–glutamic acid)/doxorubicin–amphiphile complex as pH–responsive drug delivery system for effective treatment of nonsmall cell lung cancer. ACS Appl Mater Interfaces, 2013, 5(5): 1781–1792. <\p>
[23] Moskwa P, Buffa FM, Pan YF, Panchakshari R, Gottipati P, Muschel RJ, Beech J, Kulshrestha R, Abdelmohsen K, Weinstock DM, Gorospe M, Harris AL, Helleday T, Chowdhury D. miR–182–mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell, 2011, 41(2): 210–220. <\p>
[24] Krell J, Frampton AE, Colombo T, Gall TMH, De Giorgio A, Harding V, Stebbing J, Castellano L. The p53 miRNA interactome and its potential role in the cancer clinic. Epigenomics, 2013, 5(4): 417–428. <\p>
[25] Hunten S, Siemens H, Kaller M, Hermeking H. The p53/microRNA network in cancer: experimental and bioinformatics approaches. Adv Exp Med Biol, 2013, 774: 77–101. <\p>
[26] Wang J, Zong JY, Zhao D, Zhuo RX, Cheng SX. In situ formation of chitosan–cyclodextrin nanospheres for drug delivery. Colloids Surf B Biointerfaces, 2011, 87(1): 198– 202. <\p>
[27] Wu N, Lin X, Zhao X, Zheng L, Xiao L, Liu J, Ge L, Cao S. MiR–125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK– independent pathways. British J Cancer, 2013, 109(11): 2853–2863. <\p>
[28] Hu WW, Chan CS, Wu R, Zhang C, Sun Y, Song JS, Tang LH, Levine AJ, Feng ZH. Negative regulation of tumor suppressor p53 by microRNA miR–504. Mol Cell, 2010, 38(5): 689–699. <\p>
[29] Le MTN, Teh C, Shyh–Chang N, Xie HM, Zhou BY, Korzh V, Lodish HF, Lim B. MicroRNA–125b is a novel negative regulator of p53. Genes Dev, 2009, 23(7): 862– 876. <\p>
[30] Xiao JN, Lin HX, Luo XB, Luo XY, Wang ZG. miR–605 joins p53 network to form a p53: miR–605: Mdm2 positive feedback loop in response to stress. EMBO J, 2011, 30(24): 5021. <\p>
[31] Macurek L, Benada J, Müllers E, Halim VA, Krej?iková K, Burdová K, Pechá?ková S, Hodný Z, Lindqvist A, Medema RH, Bartek J. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis. Cell Cycle, 2013, 12(2): 251–262. <\p>
[32] Zhang XN, Wan GH, Mlotshwa S, Vance V, Berger FG, Chen HX, Lu XB. Oncogenic Wip1 phosphatase is inhibited by miR–16 in the DNA damage signaling pathway. Cancer Res, 2010, 70(18): 7176–7186. <\p>
[33] Crescenzi E, Raia Z, Pacifico F, Mellone S, Moscato F, Palumbo G, Leonardi A. Down–regulation of wild–type p53–induced phosphatase 1 (Wip1) plays a critical role in regulating several p53–dependent functions in premature senescent tumor cells. J Biol Chem, 2013, 288(23): 16212–16224. <\p>
[34] Tan GY, Shi YL, Wu ZH. MicroRNA–22 promotes cell survival upon UV radiation by repressing PTEN. Biochem Biophys Res Commun, 2012, 417(1): 546–551. <\p>
[35] Yao YL, Wu XY, Wu JH, Gu T, Chen L, Gu JH, Liu Y, Zhang QH. Effects of MicroRNA–106 on Proliferation of Gastric Cancer Cell through Regulating p21 and E2F5. Asian Pac J Cancer Prev, 2013, 14(5): 2839–2843. <\p>
[36] Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res, 2009, 69(3): 1221–1229. <\p>
[37] Khabar KS. Post–transcriptional control during chronic inflammation and cancer: a focus on AU–rich elements. Cell Mol Life Sci, 2010, 67(17): 2937–2955. <\p>
[38] Wilker EW, van Vugt MATM, Artim SA, Huang PH, Petersen CP, Reinhardt HC, Feng Y, Sharp PA, Sonenberg N, White FM, Yaffe MB. 14–3–3sigma controls mitotic translation to facilitate cytokinesis. Nature, 2007, 446(7133): 329–332. <\p>
[39] Scoumanne A, Cho SJ, Zhang J, Chen XB. The cyclin– dependent kinase inhibitor p21 is regulated by RNA– binding protein PCBP4 via mRNA stability. Nucleic Acids Res, 2011, 39(1): 213–224. <\p>
[40] He Y, Zhang X, Zeng X, Huang Y, Wei JA, Han L, Li CX, Zhang GW. HuR–mediated posttranscriptional regulation of p21 is involved in the effect of Glycyrrhiza uralensis licorice aqueous extract on polyamine–depleted intestinal crypt cells proliferation. J Nutr Biochem, 2012, 23(10): 1285–1293. <\p>
[41] Barker A, Epis MR, Porter CJ, Hopkins BR, Wilce MC, Wilce JA, Giles KM, Leedman PJ. Sequence requirements for RNA binding by HuR and AUF1. J Biochem, 2012, 151(4): 423–437. <\p>
[42] Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WFC, Blackwell TK, Anderson P. MK2–induced tristetraprolin: 14–3–3 complexes prevent stress granule association and ARE–mRNA decay. EMBO J, 2004, 23(6): 1313–1324. <\p>
[43] Kedersha N, Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans, 2002, 30(Pt 6): 963–969. <\p>
[44] Rousseau S, Morrice N, Peggie M, Campbell DG, Gaestel M, Cohen P. Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP–K2 and its interaction with cytokine mRNAs. EMBO J, 2002, 21(23): 6505– 6514. <\p>
[45] Nakamura H, Kawagishi H, Watanabe A, Sugimoto K, Maruyama M, Sugimoto M. Cooperative role of the RNA–binding proteins Hzf and HuR in p53 activation. Mol Cell Biol, 2011, 31(10): 1997–2009. <\p>
[46] Lal A, Abdelmohsen K, Pullmann R, Kawai T, Galban S, Yang XL, Brewer G, Gorospe M. Posttranscriptional derepression of GADD45alpha by genotoxic stress. Mol Cell, 2006, 22(1): 117–128. <\p>
[47] Kim HS, Kuwano Y, Zhan M, Pullmann R Jr, Mazan– Mamczarz K, Li H, Kedersha N, Anderson P, Wilce MCJ, Gorospe M, Wilce JA. Elucidation of a C–rich signature motif in target mRNAs of RNA–binding protein TIAR. Mol Cell Biol, 2007, 27(19): 6806–6817. <\p>
[48] van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA–binding proteins and its implications for cancer. Nat Rev Cancer, 2011, 11(9): 644–656. <\p>
[49] Ciafrè SA, Galardi S. MicroRNAs and RNA–binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol, 2013, 10(6): 935–942. <\p>
[50] Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA–mediated translational repression in human cells subjected to stress. Cell, 2006, 125(6): 1111–1124. <\p>
[51] Sharma A, Bhat AA, Krishnan M, Singh AB, Dhawan P. Trichostatin–A modulates Claudin–1 mRNA stability through the modulation of Hu antigen R and tristetraprolin in colon cancer cells. Carcinogenesis, 2013, 34 (11): 2610–2621. <\p>
[52] Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG. A feedback loop comprising lin–28 and let–7 controls pre–let–7 maturation during neural stem– cell commitment. Nat Cell Biol, 2008, 10(8): 987–993. <\p>
[53] Wei W, Ba ZQ, Gao M, Wu Y, Ma YT, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi YJ. A role for small RNAs in DNA double–strand break repair. Cell, 2012, 149(1): 101–112. <\p>
[54] Nie DM, Ouyang YD, Wang X, Zhou W, Hu CG, Yao JL. Genome–wide analysis of endosperm–specific genes in rice. Gene, 2013, 530(2): 236–247.<\p> |