遗传 ›› 2014, Vol. 36 ›› Issue (10): 965-973.doi: 10.3724/SP.J.1005.2014.0965
钱秋杰,车家倩,叶露鹏,钟伯雄
收稿日期:
2014-05-27
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
钟伯雄,教授,博士生导师,研究方向:家蚕分子生物学。E-mail: bxzhong@zju.edu.cn
E-mail:qianqiujie08@163.com
作者简介:
钱秋杰,硕士研究生,专业方向:转基因家蚕丝腺生物反应器。E-mail: qianqiujie08@163.com
基金资助:
Qiujie Qian, Jiaqian Che, Lupeng Ye, Boxiong Zhong
Received:
2014-05-27
Online:
2014-10-20
Published:
2014-10-20
摘要: piggyBac (PB)转座系统具有转座效率高、删除精确、半随机插入和携带片段较大等优点。但是作为一种转基因实验的工具,特别是在哺乳动物个体水平的转基因方面,还需要提高其转基因效率,并降低外源基因随机插入对内源基因破坏的风险。近年来的研究结果显示,PB转座系统得到了进一步改进:采用PB转座酶与DNA特异性结合蛋白融合而构成的融合型转座酶,表现出外源片段有插入到染色体靶向位点的倾向;采用突变体筛选的方法提高了PB转座酶的活性,获得了只具有切除活性而没有插入活性的新型PB转座酶;采用PB转座系统与细菌人工染色体(Bacterial artificial chromosomes, BAC)载体联合使携带的外源片段长度提高到了207 kb。改进后的PB转座系统在基因组研究、基因治疗、诱导多能干细胞(Induced pluripotent stem cells, iPSCs)诱导及其分化方面发挥了较大的作用。文章对PB转座系统的最新研究进展和应用前景进行了综述。
钱秋杰,车家倩,叶露鹏,钟伯雄. piggyBac转座系统的功能改进及在哺乳动物中的应用[J]. 遗传, 2014, 36(10): 965-973.
Qiujie Qian, Jiaqian Che, Lupeng Ye, Boxiong Zhong. The improvement and application of piggyBac transposon system in mammals[J]. HEREDITAS(Beijing), 2014, 36(10): 965-973.
[1] B. Chromosome organization and genic expression. ColdSpring Harb Symp Quant Biol , 1951, 16: 13-47. [2] AFA. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev , 1999, 9(6): 657-663. [3] Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty , a Tc1 -like transposon from fish, and its transposition in human cells. Cell , 1997, 91(4): 501-510. [4] H, Izsvák Z, Walisko O, Ivics Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther , 2004, 9(2): 292-304. [5] AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature , 2005, 436(7048): 221-226. [6] L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, Grzela DP, Schmitt A, Becker K, Matrai J, Ma L, Samara-Kuko E, Gysemans C, Pryputniewicz D, Miskey C, Fletcher B, Vandendriessche T, Ivics Z, Izsvak Z. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet , 2009, 41(6): 753-761. [7] AM, Yang Y, Clark KJ, Liu G, Cui ZB, Dupuy AJ, Bell JB, Largaespada DA, Hackett PB. Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther , 2003, 8(1): 108-117. [8] PB. Integrating DNA vectors for gene therapy. Mol Ther , 2007, 15(1): 10-12. [9] MJ, Smith GE, Summers MD. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of Autographa californica and Galleria mellonella nuclear polyhedrosis viruses. J Virol , 1983, 47(2): 287-300. [10] AM, Harrell RN. Germline transformation of Drosophila melanogaster with the piggy Bac transposon vector. Insect Mol Biol , 1999, 8(4): 449-457. [11] AM, Mccombs SD, Fraser MJ, Saul SH. The lepidopteran transposon vector, piggy Bac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA , 1998, 95(13): 7520-7525. [12] N, Li X, Fraser MJ Jr. Transposition of the piggy Bac element in embryos of Drosophila melanogaster , Aedes aegypti and Trichoplusia ni . Mol Gen Genet , 1999, 261(4-5): 803-810. [13] T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. Germline transformation of the silkworm Bombyx mori L . using a piggy Bac transposon-derived vector. Nat Biotechnol , 2000, 18(1): 81-84. [14] J, Zhang JM, Li X, Suo F, Zhang MJ, Hou W, Han J, Du LL. A piggy Bac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe . Nucleic Acids Res , 2011, 39(6): e40. [15] J, Du LL. piggyBac transposon-based insertional mutagenesis for the fission yeast Schizosaccharomyces pombe . Methods Mol Biol , 2014, 1163: 213-222. [16] C, Momose T, Gehring WJ, Saló E. Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA , 2003, 100(24): 14046- 14051. [17] NF, Fraser TS, Adams JA, Fraser MJJr. Interplasmid transposition demonstrates piggy Bac mobility in vertebrate species. Genetica , 2006, 128(1-3): 347-357. [18] Y, Lin C, Wang X. piggy Bac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res , 2009, 37(21): e141. [19] S, Saadeldin IM, Choi WJ, Lee SJ, Lee WW, Kim BH, Han HJ, Bang DH, Lee BC, Jang G. Production of transgenic bovine cloned embryos using piggy Bac transposition. J Vet Med Sci , 2011, 73(11): 1453-1457. [20] 高雪, 张路培, 高会江, 李俊雅, 许尚忠. piggy Bac转座子在牛基因组的整合位点及特征分析. 遗传, 2013, 35(6): 771-777. [21] ZF, Xu ZQ, Zou X, Zeng F, Shi JS, Liu DW, Urschitz J, Moisyadi S, Li ZC. Pig transgenesis by piggy Bac transposition in combination with somatic cell nuclear transfer. Transgenic Res , 2013, 22(6): 1107-1118. [22] Z, Zeng F, Meng F, Xu Z, Zhang X, Huang X, Tang F, Gao W, Shi J, He X, Liu D, Wang C, Urschitz J, Moisyadi S, Wu Z. Generation of transgenic pigs by cytoplasmic injection of piggy Bac transposase-based pmGENIE-3 plasmids. Biol Reprod , 2014, 90(5): 93. [23] A, Endo M, Osakabe K, Saika H, Toki S. Precise marker excision system using an animal-derived piggy Bac transposon in plants. Plant J , 2014, 77(3): 454-463. [24] MJ, Cary L, Boonvisudhi K, Wang HGH. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology , 1995, 211(2): 397-407. [25] V, Bitko V, Fouty B. Minimal piggy Bac vectors for chromatin integration. Gene Ther , 2014, 21(1): 1-9. [26] S, Wu XH, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggy Bac (PB) transposon in mammalian cells and mice. Cell , 2005, 122(3): 473-483. [27] MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A. Mobilization of giant piggy Bac transposons in the mouse genome. Nucleic Acids Res , 2011, 39(22): e148. [28] MH, Coates CJ, George AL Jr. piggy Bac transposon-mediated gene transfer in human cells. Mol Ther , 2007, 15(1): 139-145. [29] R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu PT, Bradley A. piggy Bac transposon mutagenesis: a tool for cancer gene discovery in mice. Science , 2010, 330(6007): 1104- 1107. [30] DA, Alford RT, Pilitt KL, Aluvihare CU, Harrell RA. piggy Bac transposon remobilization and enhancer detection in Anopheles mosquitoes . Proc Natl Acad Sci USA , 2011, 108(39): 16339-16344. [31] MJ, Ciszczon T, Elick T, Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggy Bac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol , 1996, 5(2): 141-151. [32] TA, Bauser CA, Fraser MJ. Excision of the piggy Bac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica , 1996, 98(1): 33-41. [33] KJ, Kaminski JM, Coates CJ. Chimeric Mos1 and piggy Bac transposases result in site-directed integration. FASEB J , 2006, 20(11): 1880-1882. [34] JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, Moisyadi S. Transcription activator like effector (TALE)-directed piggy Bac transposition in human cells. Nucleic Acids Res , 2013, 41(19): 9197-9207. [35] C, Galvan DL, George AL, Kaja A, Wilson MH. Manipulating piggy Bac transposon chromosomal integration site selection in human cells. Mol Ther , 2011, 19(9): 1636-1644. [36] A, Berenshteyn F, Brivanlou AH. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell , 2009, 5(3): 332-342. [37] H, Higuchi Y, Kawakami S, Yamashita F, Hashida M. piggy Bac transposon-mediated long-term gene expression in mice. Mol Ther , 2010, 18(4): 707-714. [38] J, Bradley A. Generation of an inducible and optimized piggy Bac transposon system. Nucleic Acids Res , 2007, 35(12): e87. [39] SCY, Meir YJJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM. piggy Bac is a flexible and highly active transposon as compared to Sleeping Beauty , Tol2 , and Mos1 in mammalian cells. Proc Natl Acad Sci USA , 2006, 103(41): 15008-150013. [40] K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A. piggy Bac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature , 2009, 458(7239): 766-770. [41] 魏峰, 刘全. piggy Bac转座子应用研究进展. 动物医学进展, 2010, 31(12): 91-94. [42] 张美丽, 黄粤. DNA转座子在小鼠基因功能研究中的应用. 遗传, 2011, 33(5): 485-493. [43] 张连峰. 转座子 piggy Bac在哺乳动物中的应用. 中国比较医学杂志, 2012, 22(1): 69-73. [44] 曾凡一. piggy Bac转座子在哺乳动物中的应用. 中国畜牧兽医, 2013, 40(2): 31-35. [45] 浩危, 庄兰芳. piggy Bac转座子介导的转基因家蚕丝腺生物反应器研究进展. 中国农业科学, 2011, 44(21): 4488-4498. [46] 蒋世忠, 马晴雯. piggy Bac转座系统在哺乳动物及其细胞中的研究进展. 生命科学, 2011, 23(3): 255-260. [47] R, Fain-Thornton J, Craig NL. piggy Bac can bypass DNA synthesis during cut and paste transposition. EMBO J , 2008, 27(7): 1097-1109. [48] X, Lobo N, Bauser CA, Fraser MJ Jr. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggy Bac. Mol Genet Genomics , 2001, 266(2): 190-198. [49] X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ Jr. piggy Bac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol , 2005, 14(1): 17-30. [50] LF, Wei H, Lu CD, Zhong BX. The relation-ship between internal domain sequences of piggy Bac and its transpositionefficiency in BmN cells and Bombyx mori . Acta Biochim Biophys Sin , 2010, 42(6): 426-431. [51] JH, Fraser TS, Fraser MJ. Analysis of the piggy Bac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues. Bmc Mol Biol , 2008, 9(1): 72. [52] JH, Schaeper CA, Fraser TS, Fraser MJ. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggy Bac transposase. Bmc Mol Biol , 2008, 9(1): 73. [53] XH, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ, Joung JK, Mccray PB Jr, Bushman FD, Sinn PL, Craig NL. piggy Bac transposase tools for genome engineering. Proc Natl Acad Sci USA , 2013, 110(25): E2279-E2287. [54] K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggy Bac transposase for mammalian applications. Proc Natl Acad Sci USA , 2011, 108(4): 1531-1536. [55] ER, Staber JM, Korsakov P, Li XH, Brett BT, Scheetz TE, Craig NL, Mccray PB Jr. A hyperactive transposase promotes persistent gene transfer of a piggy Bac DNA transposon. Mol Ther Nucleic Acids , 2012, 1(10): e50. [56] JE, Huye LE, Yusa K, Zhou LQ, Craig NL, Wilson MH. Hyperactive piggy Bac gene transfer in human cells and in vivo . Hum Gene Ther , 2012, 23(3): 311-320. [57] JA, Smith RC, Li XH, Craig NL, Atkinson PW. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti . Insect Biochem Mol Biol , 2013, 43(10): 899-906. [58] YJJ, Lin A, Huang MF, Lin JR, Weirauch MT, Chou HC, Lin SJA, Wu SCY. A versatile, highly efficient, and potentially safer piggy Bac transposon system for mammalian genome manipulations. FASEB J , 2013, 27(11): 4429- 4443. [59] H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev , 2005, 57(4): 559-577. [60] S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA , 1994, 91(2): 664-668. [61] JB, Chou FJ, Ku AT, Fan HH, Lee TL, Huang YH, Yang TL, Su IC, Yu IS, Lin SW, Chien CL, Ho HN, Chen YT. A nucleolus-predominant piggy Bac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS ONE , 2014, 9(2): e89396. [62] DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJN, Rooney CM, Wilson MH. Genome-wide mapping of piggy Bac transposon integrations in primary human T cells. J Immunother , 2009, 32(8): 837-844. [63] JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggy Bac transposases for genomic targeting in human cells. Nucleic Acids Res , 2012, 40(14): 6978-6991. [64] I, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z, Ivics Z. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res , 2012, 40(14): 6693-6712. [65] AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui XX, Meng XD, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science , 2009, 325(5939): 433. [66] F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol , 2011, 29(2): 149-153. [67] P, Montoliu L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res , 2001, 10(2): 83-103. [68] R, Zhuang Y, Han M, Xu T, Wu X. piggy Bac as a high-capacity transgenesis and gene-therapy vector in human cells and mice. Dis Model Mech , 2013, 6(3): 828-833. [69] M, Fu J, Obst M, Baer I, Weidlich S, Wang HL, Smith AJH, Anastassiadis K, Stewart AF. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res , 2012, 40(19): e150. [70] M, Naumann R, Fu J, Obst M, Mueller D, Stewart AF, Anastassiadis K. Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genesis , 2013, 51(2): 135-141. [71] J, Kawasumi M, Owens J, Morozumi K, Yamashiro H, Stoytchev I, Marh J, Dee JA, Kawamoto K, Coates CJ, Kaminski JM, Pelczar P, Yanagimachi R, Moisyadi S. Helper-independent piggy Bac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc Natl Acad Sci USA , 2010, 107(18): 8117-8122. [72] J, Stoytcheva Z, Urschitz J, Sugawara A, Yamashiro H, Owens JB, Stoytchev I, Pelczar P, Yanagimachi R, Moisyadi S. Hyperactive self-inactivating piggy Bac for transposase-enhanced pronuclear microinjection transgenesis. Proc Natl Acad Sci USA , 2012, 109(47): 19184-19189. [73] CP, Mann RS. A piggy Bac transposon gene trap for the analysis of gene expression and function in Drosophila . Genetics , 2004, 167(4): 1801-1811. [74] SF, Cornett JC, Ni TK, Bosenberg MW, Xu T. piggy Bac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART) for genetic screens in mice. PLoS ONE , 2011, 6(10): e26650. [75] K, Jang CW, Chen DW, Xiao NN, Overbeek PA, Behringer RR. Insertional mutagenesis by a hybrid piggy Bac and Sleeping Beauty transposon in the rat. Genetics , 2012, 192(4): 1235-1248. [76] TK, Landrette SF, Bjornson RD, Bosenberg MW, Xu T. Low-copy piggy Bac transposon mutagenesis in mice identifies genes driving melanoma. Proc Natl Acad Sci USA , 2013, 110(38): E3640-E3649. [77] VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG, Tan WF, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC. In vivo genome editing using a high-efficiency TALEN system. Nature , 2012, 491(7422): 114-118. [78] P, Yang LH, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science , 2013, 339(6121): 823-826. [79] LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA- guided platform for sequence-specific control of gene expression. Cell , 2013, 152(5): 1173-1183. [80] YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell , 2013, 13(6): 659-662. [81] N, Liao BJ, Zhang H, Wang LL, Shan YL, Xue YT, Huang K, Chen SB, Zhou XX, Chen Y, Pei DQ, Pan GJ. Transcription activator-like effector nuclease (TALEN)- mediated gene correction in integration-free β-Thalas-semia induced pluripotent stem cells. J Biol Chem , 2013, 288(48): 34671-34679. [82] SK, Liu L, Doherty JE, Kaja A, Galvan DL, Fletcher BS, Wilson MH. piggy Bac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther , 2009, 17(12): 2115-2120. [83] K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell , 2006, 126(4): 663-676. [84] K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggy Bac transposon. Nat Methods , 2009, 6(5): 363-369. [85] 张 博) |
[1] | 莫健新,王豪强,黄广燕,蔡更元,吴珍芳,张献伟. 微生物源果胶酶在猪PK15细胞中异源表达及其酶学性质分析[J]. 遗传, 2019, 41(8): 736-745. |
[2] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[3] | 张豪, 张志鹏, 郭晓东, 马敏, 敖月, 刘旭, 马小燕, 梁浩, 郭旭东. cgVEGF164基因对小鼠毛囊生长的影响[J]. 遗传, 2019, 41(1): 76-84. |
[4] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[5] | 姚雅馨,喇永富,狄冉,刘秋月,胡文萍,王翔宇,储明星. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40(8): 620-631. |
[6] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[7] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[8] | 陈建伟,邵宁,张雨晨,朱元首,杨立桃,陶生策,卢大儒. 一种载样简单的多重可视化PCR微芯片[J]. 遗传, 2017, 39(6): 525-534. |
[9] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[10] | 马三垣,夏庆友. 家蚕遗传育种:从传统杂交到分子设计[J]. 遗传, 2017, 39(11): 1025-1032. |
[11] | 沈丹,陈才,王赛赛,陈伟,高波,宋成义. Tc1/Mariner转座子超家族的研究进展[J]. 遗传, 2017, 39(1): 1-13. |
[12] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[13] | 刘茜,王瑾晖,李晓宇,岑山. 逆转录转座子LINE-1与肿瘤的发生和发展[J]. 遗传, 2016, 38(2): 93-102. |
[14] | 王进龙, 王建, 田春艳. KRAB型锌指蛋白的进化及在物种演化中的功能[J]. 遗传, 2016, 38(11): 971-978. |
[15] | 何珊, 张令强. 线性泛素化修饰研究进展[J]. 遗传, 2015, 37(9): 911-917. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: