遗传 ›› 2014, Vol. 36 ›› Issue (10): 985-994.doi: 10.3724/SP.J.1005.2014.0985
樊锦涛,蒋琛茜,邢继红,董金皋
收稿日期:
2014-05-16
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
邢继红,教授,研究方向:分子生物学。Tel: 0312-7528142;E-mail: xingjihong2000@126.com;董金皋,教授,博士生导师,研究方向:植物分子病理学。Tel: 0312-7528266;E-mail: dongjingao@126.com
E-mail:afanjintao@126.com
作者简介:
樊锦涛,硕士研究生,专业方向:分子生物学。E-mail: afanjintao@126.com
基金资助:
Jintao Fan, Chenxi Jiang, Jihong Xing, Jingao Dong
Received:
2014-05-16
Online:
2014-10-20
Published:
2014-10-20
摘要: 拟南芥R2R3-MYB转录因子在拟南芥生长发育、代谢及响应生物和非生物胁迫的调控网络中具有重要作用。根据保守的氨基酸序列,R2R3-MYB转录因子被分为25个亚族,其中第22亚族包含AtMYB44、AtMYB77、AtMYB73和AtMYB70 4个基因,主要响应生物和非生物胁迫。文章从基因功能的相似性、基因表达的一致性和基因结构的保守性3方面综述了第22亚族的4个基因,并综合讨论了其在结构与功能上的冗余性和多样性。
樊锦涛,蒋琛茜,邢继红,董金皋. 拟南芥R2R3-MYB家族第22亚族的结构与功能[J]. 遗传, 2014, 36(10): 985-994.
Jintao Fan, Chenxi Jiang, Jihong Xing, Jingao Dong. Structure and function of the 22nd subfamily in Arabidopsis R2R3-MYB family[J]. HEREDITAS(Beijing), 2014, 36(10): 985-994.
[1] C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis . Trends Plant Sci , 2010, 15(10): 573-581. [2] MD, Thomma BP, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mo Plant Pathol , 2006, 7(1): 1-16. [3] S, Canonne J, Daniel X, Jauneau A, Brière C, Roby D, Rivas S. AtsPLA2-α nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proc Natl Acad Sci USA , 2010, 107(34): 15281-15286. [4] PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis . Plant Physiol , 2009, 151(1): 275-289. [5] M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem , 2006, 281(49): 37636-37645. [6] F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol , 2005, 138(2): 1083-1096. [7] R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-and MYB111-independent flavonol glycoside accumulation. New Phytol , 2010, 188(4): 985-1000. [8] A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol , 2010, 154(3): 1428-1438. [9] S, Gatz C. Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-rep-ressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes. Mol Gen Genet , 2001, 264(6): 860-870. [10] DL, Gonzali S, Loreti E, Pucciariello C, Degl'Innocenti E, Guidi L, Alpi A, Perata P. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol , 2008, 35(7): 606-618. [11] JL, Lee C, Zhong RQ, Ye ZH. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis . Plant Cell , 2009, 21(1): 248-266. [12] K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, Jin H, Koes R, Roberts K, Martin C. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development , 2007, 134(9): 1691-1701. [13] T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell , 2006, 18(3): 598-611. [14] D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis . Plant Cell , 2006, 18(3): 586-597. [15] SH, Kim HJ, Ryu JS, Choi H, Jeong S, Shin J, Choi G, Nam HG. CRY1 inhibits COP1-mediated degradation of BIT1, a MYB transcription factor, to activate blue light-dependent gene expression in Arabidopsis . Plant J , 2008, 55(3): 361-371. [16] V, Lee MM, Wester K, Herrmann U, Zheng ZG, Oppenheimer D, Schiefelbein J, Hulskamp M. Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development , 2005, 132(7): 1477-1485. [17] YH, Kirik V, Hulskamp M, Nam KH, Hagely K, Lee MM, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell , 2009, 21(4): 1080-1094. [18] MM, Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis , is a position-dependent regulator of epidermal cell patterning. Cell , 1999, 99(5): 473-483. [19] AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65 , are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell , 2005, 17(3): 705-721. [20] A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis . Plant Physiol , 2009, 149(2): 851-862. [21] A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J , 2006, 46(6): 984-1008. [22] der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon L, Ton J, Pieterse CMJ. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis . Plant Physiol , 2008, 146(3): 1293-1304. [23] G, Van der Ent S, Trillas I, Pieterse CMJ. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol , 2009, 11(1): 90-96. [24] S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J , 2003, 34(4): 519-528. [25] A, Seki M, Umezawa T, Ishida J, Satou M, Akiyama K, ZHU JK, Shinozaki K. Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3-1 . Plant Cell Environ , 2005, 28(10): 1267-1275. [26] JH, Nguyen NH, Jeong CY, Nguyen NT, Hong S-W, Lee H. Loss of the R2R3 MYB, AtMyb73 , causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis . J Plant Physiol , 2013, 170(16): 1461-1465. [27] C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Do Choi Y, Cheong JJ. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis . Plant Physiol , 2008, 146(2): 623-635. [28] Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J , 2003, 34(6): 868-887. [29] S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell , 2002, 14(8): 1675-1690. [30] K, Wanke D, Kilian J, Berendzen K, Harter K, Piechulla B. Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. Plant J , 2012, 70(3): 445-459. [31] BH, Jia ZH, Tian SM, Wang XM, Gou ZH, Lü BB, Dong HS. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis . Funct Plant Biol , 2013, 40(3): 304-313. [32] JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J , 2013, 73(3): 483-495. [33] C, Shim JS, Seo JS, Lee HY, Kim CH, Do Choi Y, Cheong JJ. Non-specific phytohormonal induction of AtMYB44 and suppression of jasmonate-responsive gene activation in Arabidopsis thaliana . Mol Cells , 2010, 29(1): 71-76. [34] RX, Chen L, Jia ZH, Lü BB, Shi HJ, Shao WL, Dong HS. Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant Microbe Interact , 2011, 24(3): 377-389. [35] BB, Li XJ, Sun WW, Li L, Gao R, Zhu Q, Tian SM, Fu MQ, Yu HL, Tang XM, Zhang CL, Dong HS. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defences in Arabidopsis . Plant Biol , 2013, 15(5): 841-850. [36] A, Djamei A, Teige M, Hirt H. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci USA , 2009, 106(43): 18414-18419. [37] Y, He LX, Nada K, Misawa SH, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana . Plant Cell Physiol , 2004, 45(6): 712-722. [38] J, Xing JH, Dong JG, Han JM, Liu JS. Functional analysis of MYB73 of Arabidopsis thaliana against Bipolaris oryzae . Agric Sci China , 2011, 10(5): 721-727. [39] R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell , 2007, 19(8): 2440-2453. [40] DJ, Gasser CS. Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC Plant Biol , 2009, 9: 29. [41] JH, Han KH, Park S, Yang J. Plant body weight-ind-uced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol , 2004, 135(2): 1069-1083. [42] D, Polisensky DH, Braam J. Genome-wide identification of touch-and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol , 2005, 165(2): 429-444. [43] SY, Kim BH, Lim CJ, Lim CO, Nam KH. Constitutive activation of stress-inducible genes in a brassinosteroid - insensitive 1 ( bri1 ) mutant results in higher tolerance to cold. Physiol Plant , 2010, 138(2): 191-204. [44] RX, Lü BB, Wang XM, Zhang CL, Zhang SP, Qian J, Chen L, Shi HJ, Dong HS. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis . J Biosciences , 2010, 35(3): 435-450. [45] V, Kölle K, Miséra S, Bäumlein H. Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol Biol , 1998, 37(5): 819-827. [46] YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis . Plant Physiol , 2002, 129(2): 661-677. [47] Y, Nothnagel EA. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol , 2004, 135(3): 1346-1366. [48] FJ, Guo C, Coleman JR. Reduction of plastid-loc-alized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol , 2008, 147(2): 585-594. [49] Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ , 2013, 36(6): 1135-1146. [50] M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet , 2005, 37(5): 501-506. [51] M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res , 2002, 30(1): 325-327. [52] C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci , 1995, 11(6): 681-684. [53] 张宪省) |
[1] | 李泽琴,李锦涛,邴杰,张根发. 拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J]. 遗传, 2019, 41(6): 534-547. |
[2] | 刘振宁, 袁黎, VenkatesanSundaresan, 余小林. 拟南芥CKI1基因上游转录调控因子筛选及鉴定[J]. 遗传, 2019, 41(5): 430-438. |
[3] | 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制[J]. 遗传, 2016, 38(7): 589-602. |
[4] | 陈兆进, 丁传雨, 郑远. 拟南芥QUA1基因在光信号途径中的表达与功能分析[J]. 遗传, 2016, 38(5): 436-443. |
[5] | 李捷 陈旭 罗莉琼 于晶 明凤. ANAC092参与调控花药发育的功能初探[J]. 遗传, 2013, 35(7): 913-922. |
[6] | 郭敏霞 傅永福. 拟南芥SUMO底物的研究进展[J]. 遗传, 2013, 35(6): 727-734. |
[7] | 王增光 柴国华 王芝瑶 唐贤丰 孙长江 周功克 马三梅. 拟南芥AtGA3OX1和AtGA3OX2基因影响茎秆次生细胞壁增厚的分子机理[J]. 遗传, 2013, 35(5): 655-665. |
[8] | 李文超,赵淑清. 人工microRNAs对拟南芥At1g13770和At2g23470基因的特异沉默[J]. 遗传, 2012, 34(3): 348-355. |
[9] | 李延安,祁林林,孙加强,刘宏宇,李传友. 茉莉酸诱导侧根形成缺陷突变体asa1-1抑制子(soa)的鉴定与遗传分析[J]. 遗传, 2011, 33(9): 1003-1010. |
[10] | 付乾堂,余迪求. 拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析[J]. 遗传, 2010, 32(8): 848-856. |
[11] | 张红宇,徐培洲,杨华,吴先军. 拟南芥的印记基因和印记表达调控[J]. 遗传, 2010, 32(7): 670-676. |
[12] | 谢崇波,金谷雷,徐海明,朱军. 拟南芥在盐胁迫环境下SOS转录调控网络的构建及分析[J]. 遗传, 2010, 32(6): 639-646. |
[13] | 张亮生,马成荣,戢茜,王翼飞. 拟南芥和水稻SET结构域基因家族全基因组鉴定、分类和表达[J]. 遗传, 2009, 31(2): 186-198. |
[14] | 喻达时,赵琼,邓克勤,郭新红. 拟南芥CK1A基因功能初步研究[J]. 遗传, 2009, 31(10): 1037-1042. |
[15] | 孙昌辉,邓晓建,方军,储成才. 高等植物开花诱导研究进展[J]. 遗传, 2007, 29(10): 1182-1182―1190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: