[1] Zhu JK. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol, 2001, 4(5): 401–406.
[2] Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to dehydration, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol, 2003, 14(2): 194–199.
[3] Clarke SM, Mur LA, Wood JE, Scott IM. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J, 2004, 38(3): 432–447.
[4] Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001, 13(7): 1527–1540.
[5] Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 2002, 415(6875): 977–983.
[6] Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat develop-ment gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14(6): 1359–1375.
[7] Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102(48): 17531–17536.
[8] Robatzek S, Somssich IE. Targets of AtWRKY6 regula-tion during plant senescence and pathogen defense. Genes Dev, 2002, 16(9): 1139–1149.
[9] Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tol-erance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6(5): 486–503.
[10] Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14(8): 1675–1690.
[11] Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profil-ing of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49(6): 865-879.
[12] Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. En-hanced heat and drought tolerance in transgenic rice seed-lings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28(1): 21–30.
[13] Qiu Y, Yu D. Over-expression of the stress-induced Os-WRKY45 enhances disease resistance and drought toler-ance in Arabidopsis. Environ Exp Bot, 2009, 65(1): 35–47.
[14] Wei W, Zhang YX, Han L, Guan ZQ, Chai TY. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of trans-genic tobacco. Plant Cell Rep, 2008, 27(4): 795–803.
[15] Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ, Zacarias L, Granell A, Lafuente MT. A survey of genes differentially expressed during long-term heat induced chilling tolerance in citrus fruit. Planta, 2003, 218(1): 65–70.
[16] Zou X, Seemann JR, Nemnan D, Shen QJ. A WRKY gene from creosote bush encodes an activator of the abscisic acid signal-ing pathway. J Biol Chem, 2004, 279(53): 55770–55779.
[17] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51(1): 21–37.
[18] Ülker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7(5): 491–498.
[19] Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NHT, Zhu SJ, Qiu JL, Micheelsen P, Rocher A, Petersen M, Newman MA, |