遗传 ›› 2013, Vol. 35 ›› Issue (7): 847-855.doi: 10.3724/SP.J.1005.2013.00847

• 综述 • 上一篇    下一篇

虱目裂化线粒体基因组研究进展

董文鸽1,2, 郭宪国1,2, 金道超1, 薛士鹏3, 秦凤2, Simon Song5, Stephen C. Barker4, Renfu Shao5   

  1. 1. 贵州大学昆虫研究所, 贵州省山地农业病虫害重点实验室, 贵阳 550025 2. 大理学院病原与媒介生物研究所, 大理 671000 3. 南阳医学高等专科学校, 南阳 473061 4. 昆士兰大学生物与化学学院寄生虫学研究室, 昆士兰, 澳大利亚 5. 阳光海岸大学科学教育工程学院种群生态学研究中心, 昆士兰, 澳大利亚
  • 收稿日期:2013-01-03 修回日期:2013-02-07 出版日期:2013-07-20 发布日期:2013-07-25
  • 通讯作者: 金道超 E-mail:dcjin@gzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(编号:81260259), 贵州省科技创新人才队伍建设专项 (编号:[2009]4003)和国际合作项目:动物裂化线粒体基因组的进化和功能研究(编号:DP120100240)资助

Understanding mitochondrial genome fragmentation in parasitic lice (Insecta: Phthiraptera)

DONG Wen-Ge1, 2, GUO Xian-Guo1, 2, JIN Dao-Chao1, XUE Shi-Peng3, QIN Feng2, Simon Song5, Stephen C.Barker4, Renfu Shao5   

  1. 1. The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China 2. Institute of Pathogens and Vectors, Dali University, Dali 671000, China 3. Nanyang Medical College, Nanyang 473061, China 4. Parasitology Section, School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, Australia 5. Genecology Research Centre, Faculty of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queen-sland, Australia
  • Received:2013-01-03 Revised:2013-02-07 Online:2013-07-20 Published:2013-07-25

摘要: 虱目是哺乳类和鸟类体表的专性寄生虫。在虱科、阴虱科、长角鸟虱科和兽羽虱科的某些寄生虱种中发现了线粒体基因组裂化现象, 其线粒体基因组裂化成了多个环状的线粒体染色体, 如体虱(Pediculus humanus)、头虱(pediculus capitis)和阴虱(Pthirus pubis)的线粒体基因组分别裂化形成20个、20个和14个微环染色体。微环染色体可能是基因删除和同源重组的结果, 关于线粒体基因组裂化的具体原因和机制, 目前并不清楚, 推测可能是进化选择或随机遗传漂变的结果或与线粒体单链DNA结合蛋白的缺失有关。鉴于线粒体基因组裂化研究对于深入理解线粒体的起源和进化方面具有重要意义, 文章以虱目裂化线粒体基因组为主线, 列举了动物裂化线粒体基因组和裂化特征, 阐述了虱目裂化线粒体基因组的研究现状, 分析了虱目线粒体基因组裂化的类型、原因和机制, 并对该领域未来的研究方向进行了展望。

关键词: 基因组裂化, 虱目, 线粒体基因组, 染色体进化

Abstract: Lice are obligate ectoparasites of mammals and birds. Extensive fragmentation of mitochondrial genomes has been found in some louse species in the families Pediculidae, Pthiridae, Philopteridae and Trichodectidae. For example, the mt genomes of human body louse (Pediculus humanus), head louse (Pediculus capitis), and public louse (Pthirus pubis) have 20, 20 and 14 mini-chromosomes, respectively. These mini-chromosomes might be the results of deletion and recombination of mt genes. The factors and mechanisms of mitochondrial genome fragmentation are currently unknown. The fragmentation might be the results of evolutionary selection or random genetic drift or it is probably related to the lack of mtSSB (mitochondrial single-strand DNA binding protein). Understanding the fragmentation of mitochondrial genomes is of significance for understanding the origin and evolution of mitochondria. This paper reviews the recent advances in the studies of mito-chondrial genome fragmentation in lice, including the phenomena of mitochondrial genome fragmentation, characteristics of fragmented mitochondrial genomes, and some factors and mechanisms possibly leading to the mitochondrial genome fragmentation of lice. Perspectives for future studies on fragmented mt genomes are also discussed.

Key words: Phthiraptera, mitochondrial genome, chromosome evolution, genome fragmentation