[1] 中国鸟类分类与分布名录. 北京: 科学出版社, 2005. [2] 海南山鹧鸪. 见卢汰春主编: 中国濒危野生鸡类. 福州: 福建科学技术出版社, 1991: 149-153. [3] 中国鸡形目鸟类种与亚种的分布和生存现状(英文). 动物学报, 1996, 42(增刊): 25-30. [4] 郑光美, 王歧山. 中国濒危动物红皮书: 鸟类. 北京: 科学出版社, 1998. [5] 2013. The IUCN Red List of Threatened Species. Version 2013. 2. [6] 史海涛, 王力军. 对海南省设立省鸟的探讨. 海南师范学院学报(自然科学版), 2002, 15(2): 67-70. [7] 海南山鹧鸪的换羽. 中国动物科学研究——中国动物学会第十四届会员代表大会及中国动物学会65周年年会论文集, 1999: 498-501. [8] 海南山鹧鸪的活动区和夜栖地利用[学位论文]. 海南师范大学, 2008. [9] 海南鹦哥岭自然保护区海南山鹧鸪( Arborophila ardens )的领域、活动区和生境利用[学位论文]. 海南师范大学, 2007. [10] 刘念, 叶伟, 黄原. 云斑车蝗线粒体基因组全序列测定与分析. 昆虫学报, 2008, 51(7): 671-680. [11] MD. Avian mtDNA primers. 2003. [12] TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res , 1997, 25(5): 955-964. [13] 雷富民, 黄原. 地山雀线粒体基因组全序列的测定与分析. 动物学研究, 2010, 31(4): 333-344. [14] 黄原, 雷富民. 黑尾地鸦线粒体基因组序列测定与分析. 遗传, 2010, 32(9): 951-960. [15] A, Douzery EJP, Springer MS. The secondary structure of mammalian mitochondrial 16S rRNA molecules: refinements based on a comparative phylogenetic approach. J Mam Evol , 2002, 9(3): 225-252. [16] S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers. Com-put Appl Biosci , 1994, 10(2): 189-191. [17] Z, Li J, Zhao XQ, Wang J, Wong GKS, Yu J. KaKs- Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics , 2006, 4(4): 259-263. [18] DP, Sorenson MD, Dimcheff DE. Multiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci USA , 1998, 95(18): 10693-10697. [19] GG, Gadaleta G, Pepe G, Saccone C, Sbisà E. Structural conservation and variation in the D-loop-con-taining region of vertebrate mitochondrial DNA. J Mol Biol , 1986, 192(3): 503-511. [20] E, Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol , 1998, 47(4): 449-462. [21] C, Pesole G, Sbisá E. The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol , 1991, 33(1): 83-91. [22] TW. The genetic legacy of Mother Goose-phylog-eographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol Ecol , 1992, 1(2): 105-117. [23] M, Kvist L. Structure and evolution of the avian mitochondrial control region. Mol Phyl Evol , 2002, 23(3): 422-432. [24] ZX, Liu Y, Li CP, You F, Chu KH. The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene , 2009, 432(1-2): 33-43. [25] TW. Molecular evolution of the mitochondrial genome. In: Mindell DP. Avian Molecular Evolution and Systematics. San Diego: Academic Press, 1997: 3-28. [26] D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature , 1981, 290(5806): 470-474. [27] DP, Sorenson MD, Dimcheff DE. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol , 1998, 15(11): 1568-1571. [28] 苗永旺, 苏小茜, 池振奋, 俞贇, 姜枫. 74 种鸟类线粒体基因组碱基组成及特征分析. 云南农业大学学报, 2009, 24(1): 51-58. [29] MP, Ochman H. Strand asymmetries in DNA evolution. Trends Genet , 1997, 13(6): 240-245. [30] CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogan JJ, Noller HF. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res , 1980, 8(10): 2275-2293. [31] HF. Structure of ribosomal RNA. Annu Rev Biochem , 1984, 53(1): 119-162. [32] A, Janke A, Arnason U. The mtDNA sequence of the ostrich and the divergence between paleognathous and neognathous birds. Mol Biol Evol , 1997, 14(7): 754-761. [33] T, Suzuki T, Watanabe K. Translation activity of mitochondrial tRNA with |