[1] Ito S, Wakamatsu K, Ozeki H. Chemical analysis of mela-nins and its application to the study of the regulation of melanogenesis. Pigm Cell Res, 2000, 13(Suppl 8): 103– 109. <\p>
[2] Esposito R, D’Aniello S, Squarzoni P, Pezzotti MR, Ris-toratore F, Spagnuolo A. New insights into the evolution of Metazoan tyrosinase gene family. PLoS ONE, 2012, 7(4): E35731. <\p>
[3] Goding GR. Melanocytes: the new black. Int J Biochem Cell Biol, 2007, 39(2): 275–279. <\p>
[4] Gillespie JP, Kanost MR, Trenczek T. Biological mediators ofinsect immunity. Ann Rev Entool, 1997, 42: 611–643. <\p>
[5] Luna-Acosta A, Thomas-Guyon H, Amari M, Rosenfeld E, Bustamante P, Fruitier-Arnaudin I. Differential tissue dis-tribution and specificity of phenoloxidases from the Pacific oyster Crassostrea gigas. CompBiochemPhysi, 2011, 159B: 220–226. <\p>
[6] Sugumaran M. Unified mechanism for sclerotization of insect cuticle. Adv Insect Physiol, 1998, 27: 229–334. <\p>
[7] Sugumaran M. Molecular mechanisms for mammalian melanogenesis comparison with insect cuticular sclerotiza-tion (minireview). FEBS Lett, 1991, 293(1?2): 4–10. <\p>
[8] Kouhei N, Masato Y, Koichi M, Hiroshi M. Tyrosinase localization in mollusc shells. Comp Biochem Physio B Biochem Mol Biol, 2007, 146: 207–214. <\p>
[9] Zhang C, Xie LP, Huang J, Chen L, Zhang RQ. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). BiochemBiopyhs Res Commun, 2006, 342(2): 632–639. <\p>
[10] Zhou Z, Ni DJ, Wang MQ, Wang LL, Shi XW, Yue F, Liu R, Song LS. The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish Shellfish Immunology, 2012, 33(2): 375–381. <\p>
[11] Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490: 49–54. <\p>
[12] Cong R, Sun W, Liu G, Fan T, Meng X, Yang L, Zhu L. Purification and characterization of phenoloxidase from clam Ruditapes philippinarum. Fish Shellfish Immunol, 2005, 18(1): 61–70. <\p>
[13] Jiang JW, Xing J, Sheng XZ, Zhan WB. Characterization of phenoloxidase from the bay scallop Argopecten irradians. J Shellfish Res, 2011, 30(2): 273–277. <\p>
[14] Aladaileh S, Rodney P, Nair SV, Raftos DA. Characterization of phenoloxidase activity in Sydney rock oysters (Saccostrea glomerata). CompBiochemPhysiol, 2007, 148(4): 470–480. <\p>
[15] Luna-Gonza´leza A, Maeda-Martíneza AN, Vargas-Alboresb F, Ascencio-Vallea F, Robles-Mungaraya M. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs. Fish Shellfish Immunol, 2003, 15(4): 275–282. <\p>
[16] Aguilera F, McDougall C, Degnan MB. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evol Biol, 2013, 13: 96. <\p>
[17] Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth, 2011, 8(10): 785–786. <\p> |