[1] Britten RJ, Kohne DE. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 1968, 161 (3841): 529-540.[2] Waring M, Britten RJ. Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science, 1966, 154(3750): 791-794.[3] Rubin CM, Houck CM, Deininger PL, Friedmann T, Schmid CW. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature, 1980, 284(5754): 372 -374.[4] Singer MF. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell, 1982, 28(3): 433-434.[5] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Chen YJ. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.[6] Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol, 2002, 11(12): 2453- 2465.[7] Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity, 2009, 104(6): 520-533.[8] Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 1994, 371(6494): 215-220.[9] Eichler EE. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet, 2001, 17(11): 661-669.[10] Feschotte C, Pritham EJ. Computational analysis and paleogenomics of interspersed repeats in eukaryotes. In: Stojanovic N, ed. Computational genomics: current methods. London: Taylor & Francis, 2007: 31-54.[11] Wessler SR. Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci USA, 2006, 103(47): 17600-17601.[12] Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica, 2002, 115(1): 49-63.[13] Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science, 2004, 303 (5664): 1626-1632.[14] Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res, 1998, 8(5): 464-478.[15] Kapitonov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA, 2003, 100(11): 6569- 6574.[16] Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem Mol Biol, 2008, 38(12): 1046-1057.[17] SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet, 1998, 20(1): 43-45.[18] Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL. Two retrotransposons maintain telomeres in Drosophila. Chromosome Res, 2005, 13(5): 443- 453.[19] Gregory TR. Synergy between sequence and size in large-scale genomics. Nature Rev Genet, 2005, 6(9): 699-708.[20] 陈建军, 王瑛. 植物基因组大小进化的研究进展. 遗传, 2009, 31(5): 464-470.[21] Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev, 2005, 15(6): 621-627.[22] 陈志伟, 吴为人. 植物中的反转录转座子及其应用. 遗传, 2004, 26(1): 122-126.[23] Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol, 2000, 42(1): 251-269.[24] Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genome Res, |