[1] Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.[2] Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science, 2006, 311(5769): 1936-1939.[3] Lin ZW, Griffith ME, Li XR, Zhu ZF, Tan LB, Fu YC, Zhang WX, Wang XK, Xie DX, Sun CQ. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226(1): 11- 20.[4] Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell, 2009, 21(1): 54-71.[5] Fang YJ, Xie KB, Hou X, Hu HH, Xiong LZ. Systematic analysis of GT factor family of rice reveals a novel sub-family involved in stress responses. Mol Genet Genomics, 2010, 283(2): 157-169.[6] Willman MR, Mehalick AJ, Packer RL, Jenik P. MicroR-NAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol, 2011, 155(4): 1871-1884.[7] Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. The trihelix family of transcription factors- light, stress and development. Trends Plant Sci, 2012, 17(3): 163-171.[8] Green PJ, Kay SA, Chua NH. Sequence-specific interac-tions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J, 1987, 6(9): 2543-2549.[9] 关秋玲, 陈焕新, 张毅, 李秋莉. 植物GT元件和GT因子的研究进展. 遗传, 2009, 31(2): 123-130.[10] 陆婷婷. 水稻全长cDNA序列的比较分析、相关数据库的构建植物与动物Trihelix转录因子基因家族的比 较研究[学位论文]. 上海交通大学, 2009.[11] Lam E. Domain analysis of the plant DNA-binding protein GT1a: Requirement of four putative a-helices for DNA binding and identification of a novel oligomerization re-gion. Mol Cell Biol, 1995, 15(2): 1014-1020.[12] Zhou D. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci, 1999, 4(6): 210-214.[13] Nagano Y. Several features of the GT-factor trihelix domain resemble those of the Myb DNA -binding domain. Plant Physiol, 2000, 124(2): 491-494.[14] Kuhn RM, Caspar T, Dehesh K, Quail PH. DNA binding factor GT-2 from Arabidopsis. Plant Mol Biol, 1993, 23(2): 337-348.[15] Ayadi M, Delaporte V, Li YF, Zhou DX. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Lett, 2004, 562(1-3): 147- 154.[16] Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK, Zhang JS, Chen SY. Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS One, 2009, 4(9): e6898.[17] Le Gourrierec J, Li YF, Zhou DX. Transcriptional activa-tion by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. Plant J, 1999, 18(6): 663-668.[18] Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol, 2004, 135(4): 2150-2161.[19] 李秋莉, 张毅, 尹辉, 李丹. 辽宁碱蓬甜菜碱醛脱氢酶基因(BADH)启动子分离及序列分析. 生物工程学 报, 2006, 22(1): 77-81.[20] 尹辉. 宁碱蓬CMO基因启动子功能分析[学位论文]. 辽宁师范大学, 2007.[21] Zhang Y, Yin H, Li D, Zhu WW, Li QL. Functional analysis of BADH gene promoter from Suaeda liaotungensis K. Plant Cell Rep, 2008, 27(3): 585-592.[22] Murata J, Takase H, Hiratsuka K. Characterization of a novel GT-box binding protein from Arabidopsis. Plant Biotechol, 2002, 19(2): 103-112.[23] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, Mcelver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol, 2004, 135(3): 1206-1220.[24] Wang R, Hong GF, Han B. Transcript abundance of rmll, encoding a putative GTI-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene, 2004, 324: 105-115.[25] Gilmartin PM, Memelink J, Hiratsuka K, Kay SA, Chua NH. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell, 1992, 4(7): 839-849.[26] Perisic O, Lam E. A tobacco DNA binding protein that interacts with a light-responsive box II element. Plant Cell, 1992, 4(7): 831-838.[27] Lam E. Domain analysis of the plant DNA-binding protein GT1a: Requirement of four putative a-helices for DNA binding and identification of a novel oligomerization region. Mol Cell Biol, 1995, 15(2): 1014-1020.[28] Ni M, Dehesh K, Tepperman JM, Quail PH. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target se-quence selectivity. Plant Cell, 1996, 8(6): 1041-1059.[29] Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Suqimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell, 2009, 21(8): 2307-2322.[30] Yoo C Y, Pence HE, Jin JB, Miura K, Gosney MJ, Hase-gawa PM, Mickelbart MV. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 2010, 22(12): 4128 -4141.[31] Smalle J, Kurepa J, Haeqman M, Gielen J, Van Montagu M, Van Der Straeten D. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proc Natl Acad Sci USA, 1998, 95(6): 3318-3322.[32] Xi J, Qiu YJ, Du LQ, Poovaiah BW. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci, 2012, 185-186: 274-280.[33] Brewer PB, Howles PA, Dorian K, Griffith ME, Ishida T, Kaplanlevy RN, Kilinc A, Smyth DR. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 2004, 131(16): 4035-4045.[34] Li X, Qin GJ, Chen ZL, Gu HY, Qu LJ. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol, 2008, 66(3): 315-327.[35] Griffith ME, da Silva Conceicão A, Smyth DR. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 1999, 126(24): 5635-5644.[36] Xu B, Li Z, Zhu Y, Wang H, Ma H, Dong A, Huang H. Arabidopsis genes AS1, AS2 and JAG negatively regulate boundary-specifying genes to promote sepal and petal development. Plant Physiol, 2008, 146(2): 566-575.[37] Lampugnani ER, Kilinc A, Smyth DR. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. Plant J, 2012, 71(5): 724- 735.[38] Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie L, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 2005, 132(3): 603-614.[39] Dehesh K, Bruce WB, Quail PH. A transacting factor that binds to a GT-motif in a phytochrome gene promoter. Science, 1990, 250(4986): 1397-1399.[40] Weng H, Yoo CY, Gosney MJ, Hasegawa PM, Mickelbart MV. Poplar GTL1 is a Ca2+/calmodulin-binding transcription fac-tor that functions in plant water use efficiency and drought tolerance. PLoS One, 2012, 7(3): e32925.[41] Zhou Y, Lu D, Li C, Luo J, Zhu B, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION. Plant Cell, 2012, 24(3): 1034-1048.[42] Konishi, S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, and Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312(5778): 1392-1396.[43] Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood J. Increasing the flow of carbon into seed oil. Biotechnol Adv, 2009, 27(6): 866-878.[44] Gao M, Li X, Lui H, Gropp GM, Lydiate DD, Wei S, Hegedus DD. ASIL1 is required for proper timing of seed filling in Arabidopsis. Plant Signal Behav, 2011, 6(12): 1886-1888.[45] Barr MS, Willmann MR, Jenik PD. Is there a role for tri-helix transcription factors in embryo maturation? Plant Signal Behav, 2012, 7(2): 205-209.[46] Geraldo N, Baurle I, Kidou S, Hu X, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol, 2009, 150(3): 1611-1618.[47] Kuromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, Sakurai T, Akiyama K, Hirayama T, Okada K, Shinozaki K. A trial phenome analysis using 4000 Ds-insertional mutants in gene coding regions of Arabidopsis. Plant J, 2006, 47(4): 640-651.[48] Kitakura S, Fujita T, Ueno Y, Terakura S, Wabiko H, Machida Y. The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nu-clear protein of tobacco. Plant Cell, 2002, 14(2): 451-463.[49] Dehesh K, Smith LG, Tepperman JM, Quail PH. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J, 1995, 8(1): 25-36.[50] Buchel AS, Molenkamp R, Bol JF, Linthorst HJ. The PR-l a promoter contains a number of elements that bind GT-1- like nuclear factors with different affinity. Plant Mol Biol, 1996, 30(3): 493-504.[51] Callebaut I, Moshous D, Mornon JP, de Villartay JP. Met-allo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acid Res, 2002, 30(16): 3592-3601. |