遗传 ›› 2016, Vol. 38 ›› Issue (1): 52-61.doi: 10.16288/j.yczz.15-275
罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯
收稿日期:
2015-06-09
修回日期:
2015-11-20
出版日期:
2016-01-20
发布日期:
2016-01-20
通讯作者:
舒凯,博士,副研究员,硕士生导师,研究方向:大豆遗传学,分子生物学。E-mail: kshu@sicau.edu.cn;杨文钰,博士,教授,博士生导师,研究方向:作物高产优质高效栽培理论与技术研究。E-mail: mssiyangwy@sicau.edu.cn
E-mail:luoxiaofeng07@sina.com
作者简介:
罗晓峰,在读本科生,专业方向:生物技术。
基金资助:
Xiaofeng Luo, Ying Qi, Yongjie Meng, Haiwei Shuai, Feng Chen, Wenyu Yang, Kai Shu
Received:
2015-06-09
Revised:
2015-11-20
Online:
2016-01-20
Published:
2016-01-20
Supported by:
摘要: Karrikins是从野火烟中发现的一类具有促进某些植物种子(如拟南芥、野燕麦)萌发的信号分子。自2004年其结构首次被解析以来,目前已经发现6种不同形式的Karrikin,其活性各有不同。虽然Karrikins被发现的时间较短,但其已成为植物分子生物学领域的研究热点。研究发现,Karrikins除促进种子萌发以外,还具有调控植物光形态建成、叶片发生等过程等生物学功能;此外,Karrikins与植物激素独脚金内酯(Strigolactone)在结构、信号传导通路等方面具有非常高的相似性。本文从Karrikins的发现史、信号传导通路、生物学功能及生态学意义等方面综述了其最新的研究进展,并探讨了Karrikins领域未来的研究方向。
罗晓峰, 戚颖, 孟永杰, 帅海威, 陈锋, 杨文钰, 舒凯. Karrikins信号传导通路及功能研究进展[J]. 遗传, 2016, 38(1): 52-61.
Xiaofeng Luo, Ying Qi, Yongjie Meng, Haiwei Shuai, Feng Chen, Wenyu Yang, Kai Shu. Current understanding of signaling transduction pathway and biological functions of Karrikins[J]. HEREDITAS(Beijing), 2016, 38(1): 52-61.
[1] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell , 2003, 115(5): 591-602. [2] Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol , 2010, 333(4): 290-296. [3] Woodward AW, Bartel B. Auxin: regulation, action, and interaction. Ann Bot , 2005, 95(5): 707-735. [4] Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell , 2004, 16(2): 367-378. [5] Yaxley JR, Ross JJ, Sherriff LJ, Reid JB. Gibberellin biosynthesis mutations and root development in pea. Plant Physiol , 2001, 125(2): 627-633. [6] Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, Chen LY, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu XD, Fan LM, Deng XW. Coordinated regulation of Arabidopsisthaliana development by light and gibberellins. Nature , 2008, 451(7177): 475-479. [7] de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature , 2008, 451(7177): 480-484. [8] Eriksson S, Bӧhlenius H, Moritz T, Nilsson O. GA 4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell , 2006, 18(9): 2172-2181. [9] Ohkuma K, Lyon JL, Addicott FT, Smith OE. Abscisin II, an abscission-accelerating substance from young cotton fruit. Science , 1963, 142(3599): 1592-1593. [10] Liu WC, Carns HR. Isolation of abscisin, an abscission accelerating substance. Science , 1961, 134(3476): 384- 385. [11] van Steveninck RFM. Abscission-accelerators in lupins ( Lupinus luteus L . ). Nature , 1959, 183(4670): 1246-1248. [12] Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana . Planta , 2004, 219(3): 479-488. [13] Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta , 1983, 157(2): 158-165. [14] Mori IC, Murata Y, Yang YZ, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca 2+ -permeable channels and stomatal closure. PLoS Biol , 2006, 4(10): e327. [15] Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell , 2002, 14(12): 3089-3099. [16] Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta , 2000, 210(2): 215-221. [17] Bethke PC, Libourel IGL, Jones RL. Nitric oxide reduces seed dormancy in Arabidopsis . J Exp Bot , 2006, 57(3): 517-526. [18] Pedroso MC, Magalhaes JR, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues. J Exp Bot , 2000, 51(347): 1027-1036. [19] Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA. Leaf senescence signaling: the Ca 2+ -conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol , 2010, 154(2): 733-743. [20] Raskin I. Salicylate, a new plant hormone. Plant Physiol , 1992, 99(3): 799-803. [21] Martínez C, Pons E, Prats G, León J. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J , 2004, 37(2): 209-217. [22] Devoto A, Turner JG. Regulation of jasmonate-mediated plant responses in Arabidopsis . Ann Bot , 2003, 92(3): 329-337. [23] Creelman RA, Mullet JE. Biosynthesis and Action of Jasmonates in Plants. Annu Rev Plant Physiol Plant Mol Biol , 1997, 48: 355-381. [24] Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. Germination of witchweed ( Striga lutea Lour.) : isolation and properties of a potent stimulant. Science , 1966, 154(3753): 1189-1190. [25] Cook CE, Whichard LP, Wall EM, Egley GH, Coggon P, Luhan PA, McPhail AT. Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed ( Striga lutea ). J Am Chem Soc , 1972, 94(17): 6198-6199. [26] Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature , 2008, 455(7210): 189-194. [27] Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier JP, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis . Planta , 2011, 233(1): 209-216. [28] Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis : another belowground role for strigolactones? Plant Physiol , 2011, 155(2): 721-734. [29] Baldwin IT, Staszak-Kozinski L, Davidson R. Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. J Chem Ecol , 1994, 20(9): 2345-2371. [30] Keeley SC, Pizzorno M. Charred wood stimulated germination of two fire-following herbs of the california chaparral and the role of hemicellulose. Am J Bot , 1986, 73(9): 1289-1297. [31] Horton JS, Kraebel CJ. Development of vegetation after fire in the chamise chaparral of southern california. Ecology , 1955, 36(2): 244-262. [32] Brown NAC, van Staden J. Smoke as a germination cue: a review. Plant Growth Regul , 1997, 22(2): 115-124. [33] Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. Science , 2004, 305(5686): 977. [34] Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. Identification of alkyl substituted 2 H -furo[2,3 -c ]pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem , 2009, 57(20): 9475-9480. [35] Dixon KW, Merritt DJ, Flematti GR, Ghisalberti EL. Karrikinolide—a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic , 2009, 813: 155-170. [36] Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol , 2009, 149(2): 863-873. [37] Chiwocha SDS, Dixon KW, Flematti GR, Ghisalberti EL, Merritt DJ, Nelson DC, Riseborough JAM, Smith SM, Stevens JC. Karrikins: a new family of plant growth regulators in smoke. Plant Sci , 2009, 177(4): 252-256. [38] Flematti GR, Goddard-Borger ED, Merritt DJ, Ghisalberti EL, Dixon KW, Trengove RD. Preparation of 2 H -furo[2,3 -c ]pyran-2-one derivatives and evaluation of their germination-promoting activity. J Agric Food Chem , 2007, 55(6): 2189-2194. [39] Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM. The karrikin response system of Arabidopsis . Plant J , 2014, 79(4): 623-631. [40] Flematti GR, Scaffidi A, Dixon KW, Smith SM, Ghisalberti EL. Production of the seed germination stimulant karrikinolide from combustion of simple carbohydrates. J Agric Food Chem , 2011, 59(4): 1195- 1198. [41] Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells , 2013, 18(2): 147-160. [42] Wang MX, Peng P, Long HX, Wang P, Bai YL, Li XY. Progress in cloning of strigolactone-related genes. Mol Plant Breed , 2014, 12(3): 603-609. 王闵霞, 彭鹏, 龙海馨, 王平, 白玉路, 李学勇. 独脚金内酯途径相关基因的研究进展. 分子植物育种, 2014, 12(3): 603-609. [43] Waters MT, Scaffidi A, Flematti GR, Smith SM. The origins and mechanisms of karrikin signalling. Curr Opin Plant Biol , 2013, 16(5): 667-673. [44] Waters MT, Scaffidi A, Moulin SLY, Sun YK, Flematti GR, Smith SM. A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in arabidopsis development but cannot mediate responses to karrikins or strigolactones. Plant Cell , 2015, 27(7): 1925-1944. [45] Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu HE, Wang YH, Li JY. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature , 2013, 504(7480): 401-405. [46] Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, Shabek N, Wu FQ, Mao HB, Dong W, Gan L, Ma WW, Gao H, Chen J, Yang C, Wang D, Tan JJ, Zhang X, Guo XP, Wang JL, Jiang L, Liu X, Chen WQ, Chu JF, Yan CY, Ueno K, Ito S, Asami T, Cheng ZJ, Wang J, Lei CL, Zhai HQ, Wu CY, Wang HY, Zheng N, Wan JM. D14-SCF D3 -dependent degradation of D53 regulates strigolactone signalling. Nature , 2013, 504(7480): 406-410. [47] Smith SM, Li JY. Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol , 2014, 21: 23-29. [48] Schwechheimer C. Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol , 2008, 11(1): 9-15. [49] Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol , 2011, 21(9): R338-R345. [50] Xu TD, Wen MZ, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang ZB. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis . Cell , 2010, 143(1): 99-110. [51] van der Does D, Leon-Reyes A, Koornneef A, van Verk MC, Rodenburg N, Pauwels L, Goossens A, Kӧrbes AP, Memelink J, Ritsema T, van Wees SCM, Pieterse CMJ. Salicylic acid suppresses jasmonic acid signaling downstream of SCF COI1 -JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell , 2013, 25(2): 744-761. [52] Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant J , 2014, 79(4): 607-622. [53] Seto Y, Yamaguchi S. Strigolactone biosynthesis and perception. Curr Opin Plant Biol , 2014, 21: 1-6. [54] Bennett T, Leyser O. Strigolactone signalling: standing on the shoulders of DWARFs. Curr Opin Plant Biol , 2014, 22: 7-13. [55] Hershko A, Ciechanover A, Rose IA. Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J Biol Chem , 1981, 256(4): 1525-1528. [56] Guo YX, Zheng ZY, La Clair JJ, Chory J, Noel JP. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis . Proc Natl Acad Sci USA , 2013, 110(20): 8284-8289. [57] Stanga JP, Smith SM, Briggs WR, Nelson DC. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis . Plant Physiol , 2013, 163(1): 318-330. [58] Nelson DC, Flematti GR, Riseborough JA, Ghisalberti EL, Dixon KW, Smith SM. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana . Proc Natl Acad Sci USA , 2010, 107(15): 7095-7100. [59] Daws MI, Davies J, Pritchard HW, Brown NAC, van Staden J. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul , 2007, 55(1): 73-82. [60] Hilhorst HWM, Karssen CM. Dual effect of light on the Gibberellin- and Nitrate-Stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana . Plant Physiol , 1988, 86(2): 591-597. [61] Bethke PC, Gubler F, Jacobsen JV, Jones RL. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta , 2004, 219(5): 847-855. [62] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant , 1962, 15(3): 473-497. [63] Baldrianová J, Černý M, Novák J, Jedelský PL, Divíšková E, Brzobohatý B. Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J Proteomics , 2015, 120: 7-20. [64] Waters MT, Smith SM. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol Plant , 2013, 6(1): 63-75. [65] Christmann A, Weiler EW, Steudle E, Grill E. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J , 2007, 52(1): 167-174. [66] Felle HH, Herrmann A, Hückelhoven R, Kogel KH. Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley ( Hordeum vulgare ). Protoplasma , 2005, 227(1): 17-24. [67] Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis . Development , 2012, 139(7): 1285-1295. [68] Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol , 2012, 22(21): 2032-2036. [69] Jia KP, Luo Q, He SB, Lu XD, Yang HQ. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis . Mol Plant , 2014, 7(3): 528-540. [70] Shu K, Zhang HW, Wang SF, Chen ML, Wu YR, Tang SY, Liu CY, Feng YQ, Cao XF, Xie Q. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis . PLoS Genet , 2013, 9(6): e1003577. [71] Liu XD, Zhang H, Zhao Y, Feng ZY, Li Q, Yang HQ, Luan S, Li JM, He ZH. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis . Proc Natl Acad Sci USA , 2013, 110(38): 15485-15490. [72] Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant , 2015, doi:10.1016/j.molp.2015.08.010. |
[1] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[2] | 帅海威, 孟永杰, 罗晓峰, 陈锋, 戚颖, 杨文钰, 舒凯. 生长素调控种子的休眠与萌发[J]. 遗传, 2016, 38(4): 314-322. |
[3] | 龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用[J]. 遗传, 2015, 37(6): 554-560. |
[4] | 周坤, 张今今. 植物中的NO及其对花发育的调节[J]. 遗传, 2014, 36(7): 661-668. |
[5] | 杨丽萍,金太成,徐洪伟,李华,周晓馥. 植物中瞬时表达外源基因的新型侵染技术[J]. 遗传, 2013, 35(1): 111-117. |
[6] | 区树俊,汪鸿儒,储成才. 亚洲栽培稻主要驯化性状研究进展[J]. 遗传, 2012, 34(11): 1379-1389. |
[7] | 区树俊,汪鸿儒,储成才. 2012年第11期《遗传》封面说明[J]. 遗传, 2012, 34(11): 1389-1389. |
[8] | 王贤磊,高兴旺,李冠,王惠林,耿守东,康锋,聂祥祥. 甜瓜遗传图谱的构建及果实与种子QTL分析[J]. 遗传, 2011, 33(12): 1398-1408. |
[9] | 李源祥,李金国,刘汉东,蒋兴村,华育坚,周活良,车新明. 水稻空间技术育种的研究[J]. 遗传, 2002, 24(4): 434-118. |
[10] | 李玉玲,张泽民,许自成,席章营. 玉米籽粒性状的遗传效应分析[J]. 遗传, 2000, 22(3): 133-136. |
[11] | 李有春. 小麦提型不育系和杂交种种子生活力遗传改良初探[J]. 遗传, 1995, 17(6): 12-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: