[1] | Li JY, Reichel M, Li YJ, Millar AA. The functional scope of plant microRNA-mediated silencing. Trends Plant Sci, 2014, 19(12): 750-756. | [2] | Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet, 2013, 14(2): 100-112. | [3] | Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25(7): 2383-2399. | [4] | Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol, 2014, 65(1): 473-503. | [5] | Taylor RS, Tarver JE, Hiscock SJ, Donoghue PCJ. Evolutionary history of plant microRNAs. Trends Plant Sci, 2014, 19(3): 175-182. | [6] | Locascio A, Roig-Villanova I, Bernardi J, Varotto S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front Plant Sci, 2014, 5: 412. | [7] | Gao JD, Fu H, Zhou XQ, Chen ZJ, Luo Y, Cui BY, Chen GH, Liu J. Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol Bioch, 2016, 103: 31-44. | [8] | Yan XN, Tian M, Wang CX. Physiological and biochemical changes during the seed development of Cypripedium japonicum. Forest Res, 2015, 28(6): 851-857. | [8] | 闫晓娜, 田敏, 王彩霞. 扇脉杓兰种子发育过程中的生理生化变化. 林业科学研究, 2015, 28(6): 851-857. | [9] | Tian MH, Zhao ZW, Tang AJ. Desiccation sensitivity and effects of temperature and moisture content of the substrate during storage on after-ripening in seeds of Cycas revoluta. Plant Physiol J, 2016, 52(2): 225-233. | [9] | 田美华, 赵正武, 唐安军. 苏铁种子的脱水敏感性及温湿条件对种子后熟的影响. 植物生理学报, 2016, 52(2): 225-233. | [10] | Xu WJ. Research on seed development and dormancy breaking mechanism of Paris polyphylla var. yunnanensis (Fr) Hand[D]. Beijing: Peking Union Medical College, 2013: 10-11. | [10] | 徐文娟. 滇重楼种子发育与种子休眠解除机理研究[学位论文]. 北京: 北京协和医学院, 2013: 10-11. | [11] | Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B. Seed dormancy in alpine species. Flora, 2011, 206(10): 845-856. | [12] | Shu K, Liu XD, Xie Q, He ZH. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9(1): 34-45. | [13] | Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci, 2013, 4: 63. | [14] | Amjad M, Akhtar J, Anwar-Ul-Haq M, Yang AZ, Akhtar SS, Jacobsen SE. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic, 2014, 172: 109-116. | [15] | Hu XW, Huang XH, Wang YR. Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. Plant Growth Regul, 2012, 67(2): 199-207. | [16] | K?pczyński J, Sznigir P. Participation of GA3, ethylene, NO and HCN in germination of Amaranthus retroflexus L. seeds with various dormancy levels. Acta Physiol Plant, 2014, 36(6): 1463-1472. | [17] | Shuai HW, Meng YJ, Luo XF, Chen F, Qi Y, Yang WY, Shu K. The roles of auxin in seed dormancy and germination. Hereditas (Beijing), 2016, 38(4): 314-322. | [17] | 帅海威, 孟永杰, 罗晓峰, 陈锋, 戚颖, 杨文钰, 舒凯. 生长素调控种子的休眠与萌发. 遗传, 2016, 38(4): 314-322. | [18] | Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, Nicolás C. Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta, 2011, 234(3): 589-597. | [19] | Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 62(10): 3289-3309. | [20] | Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA expression. J Transl Med, 2016, 14: 143. | [21] | Zhang GH, Lu JX, Chen Y. The regulation mechanism of microRNA and its roles in lipogenesis. J Biol, 2013, 30(2): 60-63, 72. | [21] | 张国华, 卢建雄, 陈妍. MicroRNA调控机制及在脂肪形成中的作用. 生物学杂志, 2013, 30(2): 60-63, 72. | [22] | Borges F, Martienssen RA. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol, 2015, 16(12): 727-741. | [23] | Song L, Axtell MJ, Fedoroff NV. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol, 2010, 20(1): 37-41. | [24] | Arribas-Hernández L, Kielpinski LJ, Brodersen P. mRNA decay of most Arabidopsis miRNA targets requires slicer activity of AGO1. Plant Physiol, 2016, 171(4): 2620-2632. | [25] | Tang XR, Bian SM, Tang MJ, Lu Q, Li SB, Liu XG, Tian G, Nguyen V, Tsang EWT, Wang AM, Rothstein SJ, Chen XM, Cui YH. MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet, 2012, 8(11): e1003091. | [26] | Singh NK. MicroRNAs databases: developmental methodologies, structural and functional annotations. Interdiscip Sci, 2016, doi: 10.1007/s12539-016-0166-7. | [27] | Yu FJ, Lu ZQ, Chen BC, Wu XL, Dong PH, Zheng JJ. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med, 2015, 19(11): 2617-2632. | [28] | Tu JJ, Liao JY, Luk ACS, Tang NLS, Chan WY, Lee TL. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development. Int J Biochem Cell Biol, 2015, 67: 115-120. | [29] | Wu L, Zhou HY, Zhang QQ, Zhang JG, Ni FR, Liu C, Qi YJ. DNA methylation mediated by a microRNA pathway. Mol Cell, 2010, 38(3): 465-475. | [30] | Hu WX, Wang TZ, Xu JH, Li HZ. MicroRNA mediates DNA methylation of target genes. Biochem Biophys Res Commun, 2014, 444(4): 676-681. | [31] | Huang DQ, Koh C, Feurtado JA, Tsang EWT, Cutler AJ. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics, 2013, 14: 140. | [32] | Gong SM, Ding YF, Zhu C. Role of miRNA in plant seed development. Hereditas (Beijing), 2015, 37(6): 554-560. | [32] | 龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用. 遗传, 2015, 37(6): 554-560. | [33] | Nodine MD, Bartel DP. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Gene Dev, 2010, 24(23): 2678-2692. | [34] | Martin RC, Liu PP, Goloviznina NA, Nonogaki H. microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. J Exp Bot, 2010, 61(9): 2229-2234. | [35] | Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell, 2002, 110(1): 33-42. | [36] | Liu YJ, Xiu ZH, Meeley R, Tan BC. Empty Pericarp5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell, 2013, 25(3): 868-883. | [37] | Han R, Jian C, Lv JY, Yan Y, Chi Q, Li ZJ, Wang Q, Zhang J, Liu XL, Zhao HX. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 2014, 15: 289. | [38] | Gu Y, Liu YH, Zhang JJ, Liu HM, Hu YF, Du H, Li YP, Chen J, Wei B, Huang YB. Identification and characterization of microRNAs in the developing maize endosperm. Genomics, 2013, 102(5-6): 472-478. | [39] | Li DD, Zheng YS, Wan L, Zhu XM, Wang ZK. Differentially expressed microRNAs during solid endosperm development in coconut (Cocos nucifera L.). Sci Hortic, 2009, 122(4): 666-669. | [40] | Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006 | [40] | 580(21): 5111-5116. | [41] | Zabala G, Campos E, Varala KK, Bloomfield S, Jones SI, Win H, Tuteja JH, Calla B, Clough SJ, Hudson M, Vodkin LO. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max. BMC Plant Biol, 2012, 12: 177. | [42] | Meng FR, Liu H, Wang KT, Liu LL, Wang SH, Zhao YH, Yin J, Li YC. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol, 2013, 13: 140. | [43] | Galli V, Guzman F, de Oliveira LFV, Loss-Morais G, K?rbes AP, Silva SDA, Margis-Pinheiro MMAN, Margis R. Identifying microRNAs and transcript targets in Jatropha seeds. PLoS One, 2014, 9(2): e83727. | [44] | Li DD, Liu ZC, Gao L, Wang FL, Gao MJ, Jiao ZJ, Qiao HL, Yang JW, Chen M, Yao LG, Liu RY, Kan YC. Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS One, 2016, 11(4): e0153168. | [45] | Nonogaki H. MicroRNA Gene regulation cascades during early stages of plant development. Plant Cell Physiol, 2010, 51(11): 1840-1846. | [46] | Das SS, Karmakar P, Nandi AK, Sanan-Mishra N. Small RNA mediated regulation of seed germination. Front Plant Sci, 2015, 6: 828. | [47] | Curaba J, Singh MB, Bhalla PL. miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot, 2014, 65(6): 1425-1438. | [48] | Martínez-Andújar C, Martin RC, Bassel GW, Arun Kumar MB, Pluskota WE, Nonogaki H. Post-transcriptional gene regulation during seed germination and stand establishment. Acta Hortic, 2011, 898: 53-59. | [49] | Wang L, Hua DP, He JN, Duan Y, Chen ZZ, Hong XH, Gong ZZ. Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet, 2011, 7(7): e1002172. | [50] | Zhang JH, Zhang SG, Han SY, Li XM, Tong ZK, Qi LW. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS One, 2013, 8(12): e81452. | [51] | Chung PJ, Park BS, Wang H, Liu J, Jang IC, Chua NH. Light-inducible miR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis. Plant Physiol, 2016, 170(3): 1772-1782. | [52] | Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta, 2010, 232(6): 1447-1454. | [53] | Chen L, Wang TZ, Zhao MG, Zhang WH. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Plant Sci, 2012, 184: 14-19. | [54] | Hu JH, Zhang HY, Ding Y. Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. J Biotechnol, 2013, 164(4): 520-524. | [55] | Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol, 2009, 50(7): 1232-1248. | [56] | He DL, Wang Q, Wang K, Yang PF. Genome-wide dissection of the microRNA expression profile in rice embryo during early stages of seed germination. PLoS One, 2015, 10(12): e0145424. | [57] | Zhu YY, Yu LL, Wang XF, Li LG. HD-Zip III Transcription factor and cell differentiation in plants. Chin Bull Bot, 2013, 48(2): 199-209. | [57] | 朱莹莹, 于亮亮, 汪杏芬, 李来庚. HD-Zip Ⅲ转录因子家族与植物细胞分化. 植物学报, 2013, 48(2): 199-209. | [58] | Huo HQ, Wei SH, Bradford KJ. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci USA, 2016, 113(15): E2199-E2206. | [59] | Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE protein3 mRNA. Plant Cell Physiol, 2010, 51(6): 1079-1083. | [60] | Ding Q, Zeng J, He XQ. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. J Plant Physiol, 2016, 198: 1-9. |
|